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Highlights 51 

A GXE study of a segregating strawberry population in Europe showed that temperature is the main 52 

driver of flowering time plasticity. A genetic marker was designed for the main QTL. 53 

 54 

Running title 55 

Strawberry phenotypic plasticity in flowering time 56 

 57 

Abstract 58 

The flowering time, which determines when the fruits or seeds can be harvested, is known to be 59 

sensitive to plasticity, i.e. the ability of a genotype to display different phenotypes in response to 60 

environmental variations. In the context of climate change, strawberry breeding can take advantage 61 

of phenotypic plasticity to create high-performing varieties adapted either to local conditions or to a 62 

wide range of climates. To decipher how the environment affects the genetic architecture of 63 

flowering time in cultivated strawberry (Fragaria ×ananassa) and modify its QTL effects, we used a 64 

bi-parental segregating population grown for two years at widely divergent latitudes (5 European 65 
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countries) and combined climatic variables with genomic data (Affymetrix® SNP array). We detected 66 

10 unique flowering time QTL and demonstrated that temperature modulates the effect of plasticity-67 

related QTL. We propose candidate genes for the three main plasticity QTL, including FaTFL1 which is 68 

the most relevant candidate in the interval of the major temperature-sensitive QTL (6D_M). We 69 

further designed and validated a genetic marker for the 6D_M QTL which offers great potential for 70 

breeding programs, for example for selecting of early-flowering strawberry varieties well adapted to 71 

different environmental conditions. 72 

 73 

Key words: flowering time, genotype × environment interaction (G×E), phenotypic plasticity, QTL-by-74 

Environment Interaction (QEI), Quantitative Trait Locus (QTL), strawberry 75 

 76 

Introduction 77 

 78 

Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in 79 

response to different environments (Pigliucci, 2005). It allows species, populations, or genotypes to 80 

cope with rapid environmental changes, including global climate change. In crop species, knowledge 81 

of trait plasticity is an important element of the success of a variety. The breeder can select locally 82 

adapted varieties which, by taking advantage of local conditions, will give better results than widely 83 

adapted varieties (Ceccarelli, 1989; Kusmec et al., 2018).  84 

 85 

The central approach to characterize plasticity of a trait is to identify for each genotype the reaction 86 

norm, which describes how the target phenotype of a specific genotype varies as a function of the 87 

environmental variables to which the genotype is exposed (Sultan, 1987). Genotype-by-environment 88 

interactions (G×E) are observed when reaction norms are non-parallel between genotypes (Pigliucci, 89 

2005). To assess this interaction, multiple genotypes or populations must be studied in a large range 90 

of environments. Numerous statistical approaches have been developed to study this interaction 91 

(reviewed in Li et al., 2017). G×E can be detected by an ANOVA with fixed or mixed models but the 92 

interpretation of the interaction is limited with these approaches. Other approaches such as AMMI 93 

or joint regression model allow the estimation of plasticity parameters to explain the interaction. 94 

Factorial regression allows the inclusion of explicit environmental factors (i.e. covariates) in G×E 95 

models along with a direct evaluation (i.e. quantification) of the importance of these covariates for 96 

G×E explanation (Malosetti et al., 2013; Lombardi et al., 2022). As a consequence, this model makes 97 

it possible to identify the environmental parameters that are biologically relevant to the trait. 98 

 99 
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One of the traits described as highly sensitive to plasticity is flowering time (Blackman, 2017). It is a 100 

trait critical for the adaptation of a variety to a particular region, as it determines when fruits or 101 

seeds are harvested and the final yield. It is regulated by endogenous genetic components and 102 

environmental factors (Cho et al., 2017). Strawberry (Fragaria ×ananassa), the most cultivated berry 103 

worldwide with a total harvested area of 389,665 ha and a total production of 9,175,384 T in 2021 104 

(FAOSTAT, https://www.fao.org/faostat/en/#data), is widely grown in the northern and southern 105 

hemispheres. New varieties adapted to a wide range of latitudes, from tropical/subtropical to cold 106 

temperate climates, have been selected using different strategies (Senger et al., 2022). Varieties 107 

cover more or less restricted regions: for example, 'Fortuna' is grown in Florida (USA) but also in 108 

Mexico, Spain, Egypt and Morocco and, conversely, 'Florence' is restricted to Norway. As most 109 

breeding programs are organized according to seasonality, the genetic architecture of flowering time 110 

and its plastic responses to environments need to be characterized (Li et al., 2018). Unlike perpetual 111 

flowering (PF) mutants where flowers are initiated continuously, flowering in seasonal flowering (SF) 112 

genotypes occurs in spring and is the consequence of floral initiation that occurred the previous 113 

autumn under low temperature and short days (Gaston et al., 2020, 2021). Thus, after dormancy, 114 

plant growth resumes in spring and inflorescences initiated the previous year emerge and flower. 115 

While the genetic and molecular control of floral initiation has been extensively studied in diploid 116 

species (Iwata et al., 2012; Koskela et al., 2012; Gaston et al., 2020 and 2021) and, more recently, in 117 

cultivated octoploid strawberry (Nakano et al., 2015; Koembuoy et al., 2020; Gaston et al., 2021; 118 

Muñoz-Avila et al., 2022), studies on the genetic control of flowering time are scarce and focus 119 

exclusively on diploid species (Samad et al., 2017). 120 

 121 

Exploring how flowering time and its phenotypic plasticity are genetically and environmentally 122 

controlled is essential for breeding better adapted strawberry varieties. To achieve this objective, we 123 

built a concerted European project (GoodBerry) to study the response of flowering time to diverse 124 

environments in a bi-parental segregating population cultivated at very different latitudes (5 125 

southern and northern European countries) over a two-year period. The integration of strawberry 126 

genomic data (Affymetrix® SNP array) with phenotypic and climatic data enabled us to detect three 127 

flowering time quantitative trait loci (QTL) for which the overall mean flowering times co-localized 128 

with plasticity parameters. We further designed and validated a genetic marker for the main highly 129 

temperature-sensitive QTL (6D_M), which offers strong potential for selecting strawberry varieties 130 

well adapted to different climates. 131 

 132 

 133 

Material and methods 134 
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 135 

Plant material and phenotyping 136 

A pseudo full-sibling F1 population of 109 individuals derived from two SF varieties with contrasting 137 

European cultivation areas was obtained: ‘Candonga’ is widely cultivated in south of Spain and 138 

‘Senga Sengana’, originally selected in Germany, is commonly grown in Poland. Nine experiments 139 

were conducted in five countries from north and south Europe in 2018 (5 experiments) and 2019 (4 140 

experiments): Skierniewice, Poland (PL) (51°95´N); Dresden, Germany (GE) (51°05´N); Agugliano, Italy 141 

(IT) (43°32N); Douville, France (FR) (45°59´N); and Huelva, Spain (SP) (37°24´N) (Fig. 1A). To 142 

homogenise the physiological development of daughter plants of all individuals and parents, young 143 

plants obtained from a single nursery were sent to the five locations for plantation in 2017 and 2018 144 

(Supplementary Fig. S1). For each individual of the genetic segregating population, 10 plants were 145 

grown in open field or under plastic tunnels, except in France where they were grown in soil-free 146 

pine bark substrate under plastic tunnel. Flowering time was defined as the date of observation of 147 

the first flower at anthesis.  148 

 149 

At each location, we recorded daily climatic variables, temperatures (mean, maximum, minimum; in 150 

°C) and global radiations (in kw/m²). These data were analysed by hierarchical clustering using 151 

Euclidean distance and Ward's method. The distance was calculated based on environmental 152 

parameters: temperatures (mean, maximum, minimum, difference minimum-maximum per day), 153 

photoperiod, global radiation and sum of Growing Degree-Days (GDD) of the nine environments. 154 

 155 

Modeling flowering time 156 

To model flowering time phenology, we tested four thermal time models: Growing Degree-Days 157 

(GDD, Wang, 1960), triangular (Hänninen, 1990a), sigmoid (Hänninen, 1990b) and Wang (Wang and 158 

Engel, 1998). These models assume that there is a relationship between the phenological stage (the 159 

flowering period) and the cumulative temperature above a threshold (base temperature, Tb or Tmin) 160 

over a given period. Temperature is expressed here in degrees Celsius (Chuine et al., 1998). This sum 161 

(SStar) is calculated from the starting date, t0. In addition, triangular and Wang models consider 162 

optimal (Topt) and maximal (Tmax) temperatures. In addition, to study the efficiency of predicting 163 

flowering date as a function of photoperiod or global radiation, we adapted the calculation of the 164 

GDD and triangular models to these two climatic parameters. Process-based models were adjusted 165 

by minimizing the residual sum of squares with the simulated annealing algorithm of Metropolis 166 

(Chuine et al., 1998) using the Phenology Modeling Platform software (PMP5; 167 

http://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform) (Chuine et al., 168 

2013). Adjustment was repeated 20 times to ensure that the global optimum had been reached. To 169 
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simulate the flowering time, we included data from both parents and from 102 individuals for whom 170 

all the data for the nine environmental conditions were available. For further analyses, we retained 171 

the most parsimonious model and the best efficiency (R2). 172 

 173 

Statistical modeling for variance components and heritability estimation 174 

To study the variation in flowering time (GDD) in our segregating population, we fitted a linear 175 

mixed-effects model (LMM) by maximum-likelihood (LME4 package; Bates et al., 2015) following 176 

equation 1 (eqn1): 177 

 ���� �  � � �� � �� � �� x �
�� � ���� 178 

where µ is the overall mean of the population, Gi the random effect of genotype i, Ej the fixed effect 179 

of environment i, G x Eij the random interaction effect between genotype i and environment j and 180 

eijk the residual term assumed to be normally distributed. The best sub-model was selected 181 

according to Fisher test for the environment effect log-likelihood ratio tests (LRT) for random effects 182 

with the lmerTest R package (Bates et al., 2021). The selected model was re-fitted by Restricted 183 

Maximum Likelihood with the plantTrialLmmFitCompSel function from the rutilstimflutre R package 184 

(Timothee Flutre's personal R code. URL https://github.com/timflutre/rutilstimflutre). 185 

 186 

The broad-sense heritability at the whole design level (H2) was derived from the variance 187 

components of eqn1 and calculated in equation 2 (eqn2): 188 

�� �  
�
�

�
�
� �  
�

�����	
���	
�	�
� 
�

�����.�	
���	
�	�  �  ��	
���	
�	�
� 

 189 

 190 

with genotype (G) variance (
²) at the numerator. Random variance components involving 191 

environment (E) were divided by the number of environments (n environments). Residual variance was 192 

divided by the number of environments multiplied by the average number of replicates per 193 

environment (n rep.environment). 194 

 195 

Statistical modeling of plasticity parameters 196 

We performed complementary statistical approaches to compute genotype specific plasticity 197 

parameters using the additive main effects and multiplicative interaction (AMMI) method, the joint 198 

regression analysis also named Finlay-Wilkinson (FW) regression model and the factorial regression 199 

model. 200 

 201 
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(i) The additive main effects and multiplicative interaction (AMMI) method combines 202 

analysis of variance (ANOVA) to model main effects of genotype and environment and 203 

principal component analysis (PCA) to decompose the complex structure of G×E into 204 

Interactive Principal Component Axes (IPCA) (Gauch, 2013) (equation 3, eqn3): 205 

��� �  � � �� � �� � ����������
�

���

� ��� 

 206 

where Yij is the mean phenotypic performance of genotype i in environment j; µ is the intercept; Gi 207 

the fixed effect of genotype i; ej is the fixed effect of environment j; λk is the singular value for the 208 

IPCA k; αik are the genotypic IPCA scores and ���   the environmental loadings for axis k; εij is the 209 

residual term G×E not captured by the model and some error deviation. 210 

 211 

We derived AMMI Stability Value (ASV) from eqn3 for each genotype as the relative influence of 212 

IPCA1 and IPCA2 scores based on their interaction sum of squares (SS) according to Purchase (1997) 213 

using the formula: 214 

��� �  ������������������ �  ����1�� � ����2� 

where (SSIPCA1/SSIPCA2) is the weight assigned to the IPCA1 value by dividing the IPCA1 SS by the IPCA2 215 

SS; IPCA1 and IPCA2 scores were the genotypic scores derived from the AMMI model. A large 216 

positive ASV value indicates a genotype that is adapted to particular environments. A small (close to 217 

zero) ASV value indicates a stable genotype across environments (Bakare et al., 2022). 218 

 219 

(ii) In the joint regression analysis (FW regression), G×E is modeled by regressing mean 220 

phenotypic performance of genotypes on an environmental index. The index value of 221 

each environment is calculated as the mean of all individuals of the flowering time in that 222 

environment (Finlay and Wilkinson, 1963). Then, the intercept and slope for each 223 

genotype are calculated by regressing genotypic performance on the environmental 224 

index as in equation 4 (eqn4): 225 

�!" �  � � �� � �1 � #�
 � �� � ��� 

where µ+Gi represents the average performance of a genotype considering all environments; the 226 

slope 1+ βi represents the regression coefficient of the model and is the linear response to 227 

environment; the residual variance of the term ε, which measures the scatter of points about the 228 

regression lines, represents the non-linear response to environment (non-linear plasticity).  229 

 230 
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(iii) The factorial regression model allowed the description of G×E by using explicit covariates 231 

as environmental factors (Tmean, Tmin, Tmax, GDD, photoperiod or global radiation). 232 

Each climatic covariate was tested successively at a significance threshold of 5% to be 233 

incorporated into the following equation 5 (eqn5):  234 

�!" �  � � �� � �� �  ��  � �$� � ��� 

where the genotypic response of genotype i in environment j is described through its sensitivity ��  to 235 

the tested covariate �$� . Slopes from eqn4 and eqn5 were computed with the script adapted from 236 

Diouf et al. (2020). 237 

 238 

Other statistical analyses 239 

Correlations between the mean flowering times were performed with “rcorr” procedure of the Hmisc 240 

R package (https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf) and a Bonferroni correction 241 

was applied at a threshold of 5%. Pairwise comparisons were performed using Student’s T-test (p < 242 

0.05). 243 

 244 

Development of linkage maps 245 

Single dose markers (SD) from the Affymetrix® array (Hardigan et al., 2020) that were in backcross 246 

configuration and segregated 1:1 (Rousseau-Gueutin et al., 2008) were used for genetic map 247 

construction using JoinMap® 5.1 software (Van Ooijen, 2011). Grouping was performed using 248 

independence log of the odds (LOD) and the default settings in JoinMap®. Linkage groups (LG) were 249 

chosen from a LOD higher than 10 for all of them. Map construction was performed using the 250 

maximum likelihood (ML) mapping algorithm and the parameters described in Labadie et al. (2022). 251 

Mapping results are displayed using MapChart (Voorrips, 2002). 252 

 253 

QTL mapping and QTL-by-environment interactions (QEI) 254 

The female and male linkage parental maps based on the 109 individuals were used separately for 255 

QTL analysis. Flowering time expressed as GDD by environment and plasticity parameters (i.e. ASV 256 

and IPCA values from AMMI model, slopes and residual variances from joint and factorial 257 

regressions), represented the phenotypic data. QTL detection was performed by simple interval 258 

mapping (SIM) using R/QTL package (Broman et al., 2003). Permutation analysis (1000 permutations) 259 

was performed to calculate the critical LOD score. QTL with LOD values higher than the LOD 260 

threshold at p ≤ 0.05 were considered significant. When one QTL was found significant, we used 261 

composite interval mapping (CIM) with one co-variable at the position of the significant QTL and 262 

reiterated the analysis until no new significant QTL were detected. Bayesian credible interval was 263 
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calculated using the function ‘bayesint’ at probability of 0.95. The proportion of phenotypic variance 264 

explained by a single QTL was calculated as the square of the partial correlation coefficient (R2). 265 

We searched for QTL × temperature by SIM following a two-step procedure by testing the 266 

temperature as an interactive (eqn6)  267 

 268 

�!" �  � � #� . &� � #� . '� �  �. &� . '� � ���   
and then as an additive (eqn7) covariate: 269 

 �!" �  � �  #�. &� � #� . '� � ���  
where Yij is the trait value for allele i (i = 1,2) in environment j among the nine location-by-year 270 

combinations (overall mean of the flowering time); &� , the mean temperature in environment j; '� , 271 

the QTL effect for genotype i; �, the QTL × temperature interaction coefficient; ���, the residual term. 272 

Evidence of QEI was assessed by taking the LOD difference between equations 6 (eqn6) and 7 (eqn7). 273 

 274 

Candidate genes 275 

Candidate genes likely to play a role in flowering time were identified into the Bayesian credible 276 

intervals common to the different QTL detected in each region showing the highest number of 277 

significant QTL: 3A_M, 6A_M and 6D_M. Homologs of known flowering time genes were selected as 278 

candidate genes in ‘Camarosa’ (Edger et al., 2019) and ‘Royal Royce’ (Hardigan et al., 2021; 279 

https://phytozome-next.jgi.doe.gov/info/FxananassaRoyalRoyce_v1_0) genomes. 280 

 281 

Marker design 282 

We developed a subgenome-specific Kompetitive Allele Specific PCR (KASP) marker (Smith and 283 

Maughan, 2015) linked to the major 6D_M QTL. The Affymetrix® marker AX-184201950 localized in 284 

the middle of the QTL harbours a C/T SNP (Hardigan et al., 2020). Specific primer design was 285 

performed using BatchPrimer3 software (http://probes.pw.usda. gov/batchprimer). Genotyping was 286 

done on the segregating population and on additional 94 genotypes using the KASP procedures 287 

described by LGC Genomics (Supplementary Table S1). Genotyping data were viewed as a cluster plot 288 

(LightCycler® 480 qPCR software, Roche). The significance of the relationship between phenotype 289 

and genotype was determined using Wilcoxon test. 290 

 291 

 292 

Results 293 

 294 

Strawberry flowering time plasticity under natural conditions 295 
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 296 

We studied the flowering time of the ‘Candonga’ x ‘Senga Sengana’ strawberry bi-parental 297 

population cultivated in five countries covering a wide range of latitudes (Fig. 1A; Supplementary 298 

Table S2). Cultures were conducted under field (PL, GE, IT) or tunnel (FR, SP) environments. 299 

Flowering time was measured during two successive years 2018 and 2019 (hereafter named 18 and 300 

19), except Spain, which was only measured in 2019, and thus nine location-by-year combinations. 301 

These nine environments clustered into two groups that overlapped southern (SP, IT, FR) and 302 

northern (GE, PL) areas in Europe (Fig. 1B). 303 

 304 

The bi-parental population was issued from a cross between two varieties displaying geographical 305 

opposite cultural adaptation with ‘Candonga’ selected in Southern Europe and ‘Senga Sengana’ in 306 

Northern-Eastern Europe (Fig. 1C). Flowering time followed a latitude gradient when expressed as 307 

calendar days and showed a larger variation in southern environments than in northern ones (Fig. 308 

1D). At Northern latitudes, the population flowered on average six to eight days earlier in 2018 than 309 

in 2019 (Fig. 1D). Notably, phenotypic correlations between environments were strictly positive but 310 

were weak (0.27-0.59) (Fig. 1E; Supplementary Table S3) suggesting genotype-by-environment 311 

interactions with changes in ranking. 312 

 313 

 314 

Growing Degree Days (GDD) for expressing the flowering time 315 

 316 

In strawberry, temperature has been described as the main environmental factor affecting the 317 

flowering time (Le Mière et al., 1998; Opstad et al., 2011) whereas photoperiod has been reported to 318 

influence flowering time in PF genotypes (Sønsteby and Heide, 2007) or global radiation in SF 319 

genotypes (Krüger et al., 2022). We tested four models: GDD, triangular, sigmoid and Wang based on 320 

temperatures, global radiation and/or photoperiod. Whatever the model, the best efficiency was 321 

obtained with thermal times and Tmean (85%) (Table 1). Models were not improved by adding the 322 

effect of global radiation or photoperiod. Estimates of the parameters for each model were also 323 

similar for both the base temperature (Tb), -1.7—1.8 °C except for the Wang model (-13.6 °C), and 324 

the starting date (t0), January 1st. The triangular and Wang models gave in addition an optimum 325 

temperature (Topt) at 24-25 °C and a maximum temperature (Tmax) at 34-35 °C. This temperature 326 

was not reached under our conditions and we therefore retained the most parsimonious GDD model 327 

for further analysis.  328 

We hypothesized that genotypes differed in the heat units necessary to trigger flowering. Therefore, 329 

we calculated the GDD value of each individual with parameters t0 as the 1
st
 of January and Tb as -330 
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1.7°C. We further plotted reaction norms for flowering time, expressed as calendar days (Fig. 2A) or 331 

GDD (Fig. 2B), for all individuals and parents across the environmental gradient quantified by the 332 

population means of calendar days or GDD.   333 

 334 

The general linear mixed-effects model (eqn1) revealed that at the whole design level and at the 335 

country level, all effects (Genotype, Environment, G×E) were significant (Supplementary Table S4). At 336 

this whole design level, the environment, the factor contributing most to phenotypic variance, was 337 

more important when flowering time was expressed as calendar days (Fig. 2C) rather than as GDD 338 

(Fig. 2D). The proportions of G×E and Genotype variances of flowering time increased substantially 339 

towards Southern environments (SP, for which a single year of study could be performed, was not 340 

included in this analysis). The G×E variance was further split into a most contributing Genotype by 341 

Location (GxL) term and a significant Genotype by Year interaction (G×Y) term (Supplementary Table 342 

S4).  343 

By-site heritabilities for both calendar day and GDD were higher in Spain (H² = 0.94, 0.95), Italy (H² = 344 

0.92, 0.89) and France (H² = 0.91, 0.88) than in Northern countries, Germany (H² = 0.59, 0.32) and 345 

Poland (H² = 0.40, 0.34) (Supplementary Table S5). In subsequent analyses, we have retained the 346 

data relating to the flowering period expressed in GDD, as they summarise the data with high 347 

efficiency by clearly identifying the heat demand of the plants for flowering, while the calendar days 348 

reflect a combination of multi environmental factors. 349 

 350 

Plasticity parameters involved in G×E 351 

 352 

For each model, AMMI, joint (FW) regression and factorial regression, analyses of variance revealed 353 

significant genotype, environment and G×E effects (p < 0.001) (Supplementary Tables S6, S7, S8). We 354 

further characterized G×E at the genotypic level with plasticity parameters derived from the three 355 

models (i.e., AMMI, FW and factorial regression) subsequently used for QTL mapping. 356 

 357 

AMMI 358 

Decomposition of the genotype-by-environment interaction through the AMMI model 359 

(Supplementary Table S6) showed a large number of significant IPCA values (from IPCA1 to IPCA9) (p 360 

< 0.01) using the F test of Gollob (1968). Each of these nine IPCA values explained from 4.3% to 21% 361 

of the variation in the SSGxE, disclosing the complexity of the interaction patterns. The first two 362 

components captured less than half of the original variance (36.4%) with most of the environments 363 

poorly represented, complicating the interpretation of the biplots (Supplementary Fig. S2). The 364 

AMMI stability value (ASV) calculated on the first two IPCA ranged from 0.06 to 1.30 across the 109 365 
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individuals and the two parents (Fig. 3A, Supplementary Table S9). The genotypes ‘H091’, ‘H0104’ 366 

and ‘H077’ had the lowest ASV values, while the genotypes ‘H027’, ‘H073’ and ‘H122’ had the highest 367 

values. 368 

 369 

Joint regression (FW) and factorial regression analyses  370 

We considered the slopes of the joint regression (slope_FW) and the factorial regression models as 371 

measures of individual plasticity (Figs 3B, C). While slope_FW was calculated by regressing the 372 

observed phenotypes on the effects of the environment (Supplementary Table S10), the factorial 373 

regression slope was calculated with different explicit environmental covariates (Malosetti et al., 374 

2013), which allowed us to assess the contribution of each climatic variable to G×E. Mean 375 

temperature (Tmean) was the factor that contributed most to the interaction (Supplementary Table 376 

S11), which is consistent with the use of GDD, which takes Tmean into account in its calculation. 377 

Moreover, this contribution and that of the GDD were also the most significant when the factorial 378 

regression analysis was carried out in calendar days (Supplementary Table S11). Other variables such 379 

as photoperiod, photoperiod × GDD and global radiation did not improve the model (Supplementary 380 

Table S11). Thus, we calculated the slope using Tmean as covariate (slope_Tmean) (Supplementary 381 

Table S11). Notably, the use of Tmean as the environmental index was more efficient to model G×E, 382 

as the factorial regression captured a larger variance of G×E (8.5%) than the FW regression (2.8%) 383 

(Supplementary Tables S7, S8). 384 

Individuals showed a wide range of slope (slope_FW, slope_Tmean) (Figs 3B, C; Supplementary Table 385 

S12). Slopes from both models were highly negatively correlated (R
2
 = 0.91) (Supplementary Fig. 386 

S3A). They were also correlated to the overall mean flowering time (R2 = 0.67) (Supplementary Figs 387 

S3B, C), indicating that early flowering genotypes were on average less stable. Indeed, late genotypes 388 

(e.g. ‘H102’) in Southern locations could rank as early or moderate early flowering genotypes in 389 

Northern locations, whereas early flowering genotypes (e.g. ‘H056’) in Southern locations could rank 390 

as moderately late or late flowering genotypes in Northern Europe (Figs 3B, C). 391 

In addition, the joint regression model estimates a non-linear plasticity parameter, which presumably 392 

has a different genetic basis (Kusmec et al., 2017). This parameter is the residual error of the joint 393 

regression model (Fig. 3D). Several genotypes, namely ‘H036’, ‘H120’, ‘H105’, ‘H064’ and ‘H065’, 394 

presented high residual variances as they displayed a nonlinear response to the environmental 395 

gradient (Fig. 3D; Supplementary Table S10). For instance, ‘H036’ was overall ranked as a moderate 396 

early flowering genotype but presented a large deviation in FR18, where it was the second earliest 397 

genotype. 398 

 399 

Genetic architecture of flowering time 400 
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 401 

We explored the genetic architecture of flowering time through QTL analysis based on male and 402 

female linkage maps with a total of 12196 SNP markers from the Affymetrix® SNP array (Hardigan et 403 

al., 2020). The linkage maps were constructed with a total of 6778 and 5418 markers for the female 404 

and male linkage maps, respectively. The final number of markers covered the expected 28 linkage 405 

groups (LG) for both female and male maps with additional small LG (44 for female and 33 for male 406 

linkage maps) (Supplementary Table S13). The lengths of the female and male linkage maps were 407 

2298.5 cM and 1653.1 cM, respectively, with an average distance between markers of 0.7 cM. LG 408 

were assigned to one of the seven homoeologous groups (HG) according to the nomenclature of 409 

Hardigan et al. (2020) where letters refer to subgenomes (A, B, C, D) and using the Royal Royce 410 

genome for LG orientation. 411 

 412 

The list of significant QTL and QEI for single and multi-environment models and for plasticity 413 

parameters is provided in Table 2. A total of 28 QTL and QEI linked to flowering time were detected 414 

and represented on the linkage groups (Fig. 4A). They can be summarized into 10 unique QTL 415 

including two QTL on LG7A (Figs 4A, B). Four flowering time QTL were detected only with single-416 

environment means (7A_F, 7A_M) or only with plasticity parameters (4D_F, 6B_M). The multi-417 

environments model allowed the detection of three QEI (2C_M, 3A_M and 6D_M) and six QTL linked 418 

to mean flowering times (1B_M, 1C_M, 2C_M, 3A_M, 6A_M and 6D_M) (Fig. 4C). It is noteworthy 419 

that the trend of the QTL effect was maintained whatever the environment but its magnitude could 420 

vary considerably from one environment to another (Fig. 4D).  421 

As could be expected from the strong correlations (>0.7) between the overall mean of flowering time 422 

and plasticity parameters (Supplementary Fig. S3), we observed co-localizations between them for 423 

3A_M, 6A_M and 6D_M QTL. Of notice, 6A_M QTL was detected in Germany for the two years and 424 

for one plasticity parameter (IPCA6). Only two QTL displayed both interaction with the environment 425 

and co-localization between the overall mean flowering time and plasticity parameters, being 3A_M 426 

and 6D_M QTL. The latest displayed the highest number of co-localizations and the highest LOD 427 

values, being detected for five environments and three plasticity parameters (slope_Tmean, IPCA1 428 

and IPCA2) whereas 3A_M QTL was only detected for SP19 and slope_Tmean. The 7A_M QTL was 429 

detected only with single-environment means (FR18 and IT18) and one plasticity parameter (IPCA2) 430 

(Figs 4A, B, 5A; Table 2).  431 

Two results suggest an effect of temperature on the 6D_M QTL: (i) QTL and QEI for the mean 432 

flowering times and slopes calculated using the Tmean as covariate (slope_Tmean) are co-located in 433 

6D_M (Fig. 4A) and (ii) the effect decreases from the south to the north of Europe (Fig. 4D). Indeed, 434 

we observed that the allelic effect of 6D_M QTL increased linearly (R² = 0.80) with Tmean across 435 
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environments (Fig. 5A), resulting in a difference of up to 150 GDD (more than six days) in the 436 

warmest environment (SP19) but less than 25 GDD (less than one day) in the coldest environment 437 

(GE18) (Fig. 4D). Such relation was less clear for the other QEI (2C_M and 3A_M QTL, Supplementary 438 

Fig. S4). 439 

We focused more specifically on the effect of alleles associated with the three QTL, 6D_M, 6A_M and 440 

3A_M co-localizing for the overall mean flowering times in the multi-environment model and 441 

plasticity parameters (Fig. 5B). The single-marker analysis showed the strongest effect of the allele 442 

linked to the 6D_M QTL on flowering time compared with the 3A_M and 6A_M, with a gain of 443 

respectively 52, 30 and 35 GDD (Supplementary Fig. S5). The earliest flowering genotypes combined 444 

the A alleles for the three markers while the latest flowering genotypes were H for the three markers 445 

with an average gain of 97 GDD (Fig. 5B). 446 

 447 

Candidate genes 448 

 449 

We identified five candidate genes associated with flowering time within the common Bayesian 450 

credible interval of 3A_M, 6A_M and 6D_M QTL (Table 3). We retained candidate genes when they 451 

were annotated in both Camarosa va1.0 (Edger et al., 2019) and Royal Royce va1.0 (Hardigan et al., 452 

2021) genomes. In the LG3A_M interval, we identified two candidate genes associated with flowering 453 

time: FaCEN-like (CENTRORADIALIS) and FaFRI-like (FRIGIDA). In the LG6A_M interval, we identified 454 

two flowering-time-related proteins: FaFY and FaFPA. In the LG6D_M QTL interval FaTFL1 (TERMINAL 455 

FLOWER1, which belongs to the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) 456 

family, as FaCEN-like in LG3A_M, was the most relevant candidate gene. 457 

 458 

Development of a KASP marker for Marker Assisted Selection 459 

 460 

We developed a KASP marker linked to the 6D_M QTL (KASP_6D) for further use in Marker-Assisted 461 

Selection (MAS) in breeding programs. We analyzed the polymorphism of this marker in our bi-462 

parental population. In addition, we validated its utilization by using a collection of 94 strawberry SF 463 

genotypes scored in two successive years in France (Douville). This marker was able to discriminate 464 

three genotypes: C/C, T/C, and T/T (Fig. 5C). In the bi-parental population, C/C genotypes required on 465 

average 50 fewer heat units (GDD) than T/C genotypes and thus provided earlier flowering (Fig. 5D). 466 

Its allelic effect was highest in Spain (a gain of up to 133 heat units (GDD) i.e. almost 8 days) and 467 

lowest (a gain of 0-2 days) in Germany and Poland. T/T alleles were exclusively present in the 468 

collection of SF genotypes where C/C alleles brought a gain of 73 heat units (GDD) (around 7 days) 469 

compared to T/T. The phenotypes of the T/C and T/T genotypes were not significantly different (Fig. 470 
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5D). Overall, our results clearly indicate that the introduction of C/C alleles can be effective in the 471 

selection of early flowering strawberry varieties, especially in southern Europe. 472 

 473 

Discussion 474 

 475 

Flowering time has been extensively characterized in crop species as co-determinant of seed or fruit 476 

yield (Jung and Müller, 2009; Eshed and Lippman, 2019). The plasticity of flowering time has been 477 

well studied in crops (Li et al., 2018), but the variability of its response to various environmental cues 478 

depends on species and/or environmental range (Arnold et al., 2019). The genetic architecture of the 479 

plasticity, i.e. the ability of a plant to change its phenotype according to environments, has been 480 

investigated in a limited number of crop species (e.g., sorghum, Li et al., 2018; tomato, Diouf et al., 481 

2020; maize, Jin et al., 2023; cherry, Branchereau et al., 2023). To date, no similar effort has been 482 

devoted to strawberry. 483 

 484 

Here, thanks to a multi-European research program coordinated between five southern and northern 485 

European countries representative of the leading strawberry production areas in Europe, we have for 486 

the first time dissected the genetic basis of flowering time and its plasticity in relation to 487 

environmental cues. To this end, we analyzed the phenotypic response of a segregating population 488 

of cultivated strawberry grown in nine contrasting environments using different models. The genetic 489 

architecture highlighted both shared and distinct genetic control of flowering time and its plasticity, 490 

as well as genetic-based sensitivity to temperature variations. 491 

 492 

The plasticity of flowering time is driven by temperature over a wide range of latitudes 493 

 494 

Identifying environmental parameters that have an impact on flowering time is essential to 495 

understand the mechanisms underlying its phenotypic plasticity (Mu et al., 2022). Temperature and 496 

photoperiod are known as major drivers of this trait (Blackman, 2017). In our study, we showed the 497 

predominance of the temperature when modeling flowering time, with thermal time (GDD) having 498 

the highest efficiency (85%) when compared to photoperiod (62%) or global radiation (37%) (Table 499 

1). The 15 percent remaining efficiency could be due to differences in cultural techniques among 500 

countries (e.g., soilless culture in France or soil culture in Italy), which produce different plant 501 

architectures and therefore variations in flowering patterns (Neri et al., 2012).  502 

 503 

Plasticity can also be studied through the decomposition of G×E, which reveals the variation in 504 

reaction norms between genotypes (Sultan, 1987). We showed here that in strawberry, the G×E 505 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.29.569202doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569202
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

variance for flowering time represents a high proportion of the total variance. This result indicates 506 

that, when flowering time is considered, strawberry is a very plastic species, more so than suggested 507 

for sorghum and cherry (Li et al., 2018; Branchereau et al., 2023). Among the models used for 508 

studying G×E, the factorial regression models describe a genetically controlled differential sensitivity 509 

to explicit environmental factors (Malosetti et al., 2013). These models, therefore, provide responses 510 

as to the climatic drivers of the trait (Lombardi et al., 2022) and environmental indexes that can be 511 

used to predict trait performance and inform the design of future studies (Guo et al., 2023). In our 512 

study, the factorial regression model used confirmed results from the GDD model by identifying the 513 

mean temperature as the dominant climatic factor affecting flowering time, well ahead of 514 

photoperiod or global radiation (Supplementary Table S11). 515 

 516 

The weaker influence of photoperiod than temperature on flowering time is likely due to the fact 517 

that our study was conducted on a population of SF genotypes, the most common type of cultivated 518 

strawberry. Photoperiod plays an essential role in floral initiation of strawberry (Heide et al., 2013). 519 

In SF strawberry, the dormancy period separates floral initiation from flowering (Gaston et al., 2021) 520 

and, therefore, can act as a reset, leading to at least partial independence between these two 521 

processes (Krüger et al., 2022). In contrast, in PF strawberry i.e. varieties producing flowers all along 522 

their vegetative cycle (Samad et al., 2022), and in forcing cultures with a year-round production 523 

system (Yamasaki, 2013), floral initiation is immediately followed by flowering, which may explain 524 

why photoperiod can have a greater influence on the timing of flowering. 525 

 526 

Improving the prediction of flowering time in contrasting environments 527 

 528 

In the very near future, strawberry production areas will face major variations in both average 529 

temperature (Tmean) and maximum temperature (Tmax) as a result of climate change 530 

(https://www.ipcc.ch/assessment-report/ar6/). To predict the adaptation of a strawberry variety to 531 

various environments using modeling, the parameters of the model must be accurately determined.  532 

 533 

To calculate heat accumulation, the GDD model assumes that there is a lower limit temperature (Tb). 534 

In strawberry, Tb was imputed arbitrary for blooming at 0°C (Opstad et al., 2011; Bethere et al., 535 

2016) or was calculated for leaf appearance (0°C, Rosa et al., 2011). Our GDD model calculated Tb as 536 

-1.7°C. Such negative Tb temperature has been previously described, for example in wheat for leaf 537 

appearance (Zartash et al., 2020). Our calculated minimum temperature is thus consistent with the -538 

1.0 to -2.0°C temperatures of the cold rooms used to store plug plants and stop their development 539 

until plantation (Lieten et al., 2005).  540 
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 541 

The GDD model does not predict the maximum temperature (Tmax), the temperature threshold 542 

above which additional heat no longer contributes to the calculation of flowering time (Elmendorf 543 

and Hollister, 2023). However, knowing the Tmax is necessary to anticipate the high temperatures 544 

predicted by climate change models. Using the triangular model, we estimated Tmax at 34°C; this 545 

temperature was exceeded only occasionally in our experiments. The Tb and Tmax values found in 546 

our study will be incorporated into models to improve flowering time prediction for strawberry, 547 

particularly under the hottest conditions (Jochner et al., 2016). 548 

 549 

Integrating the results of the G×E analyses makes it possible to decipher the genetic architecture of 550 

flowering time plasticity 551 

 552 

In the context of climate change, to overcome the problem of traditionally selected varieties, which 553 

are highly efficient but not very plastic, it is becoming increasingly necessary to produce genotypes 554 

suitable for multi environments. This can be achieved by taking advantage of phenotypic plasticity in 555 

breeding programs (Kusmec et al., 2018; Monforte, 2020). The genetic basis of phenotypic plasticity 556 

has been a central research topic in recent decades (Pigliucci, 2005). In this study, by combining the 557 

detection of multi-environmental and environment-specific QTL, we have highlighted the differential 558 

sensitivity of QTL to environmental changes and the influence of G×E on strawberry flowering 559 

phenotype. We observed four QTL displaying co-localization between the mean flowering times 560 

(single- and multi-environment models) and plasticity parameters (3A_M, 6A_M, 6D_M and 7A_M). 561 

Remarkably, while two of these QTL (3A_M and 6A_M) were identified in a single country (the 3A_M 562 

QTL in Spain, the 6A_M QTL in Germany), the 6D_M QTL was detected across multi environments 563 

and in the five countries. In the case of the 3A_M, 6A_M and 7A_M QTL, the genetic control of 564 

flowering time likely reflects the adaptation of strawberry to local climates (Mitchell-Olds and 565 

Schmitt, 2006). The 3A_M QTL could particularly be useful for breeding strawberry varieties adapted 566 

to the hotter conditions of Spain and other countries where strawberry production is expanding (for 567 

example Morocco and Mexico), whereas the use of the 6A_M QTL could be more relevant in 568 

temperate-cold conditions. The 7A_M QTL was a particular case as it was not detected in the multi-569 

environment model and could be linked to specific conditions met in France and Italy in 2018. 570 

Remarkably, the sign of the effect of 6D_M QTL was consistent across all environments, meaning 571 

that it can be used in breeding programs to create varieties adapted to both northern and southern 572 

European climates. However, as its effect on flowering time is higher in southern (subtropical) 573 

Europe and lower in northern (temperate-cold) Europe, the use of this QTL for breeding would be 574 

more relevant in southern Europe and other countries with similar climates. 575 
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 576 

Two models have been proposed for the genetic control of phenotypic plasticity (Via et al., 1995): (i) 577 

the gene-regulation model, according to which regulatory loci modify the expression of other genes 578 

(e.g. structural genes) as a function of the environment, and (ii) the allelic sensitivity model, 579 

according to which the alleles underlying the QTL are differentially expressed depending on the 580 

environment. These models involve different genetic controls: the gene-regulation model implies 581 

that QTL for plasticity parameters are distinct from the mean flowering times QTL, whereas the allelic 582 

sensitivity model implies co-localization between them (Gutteling et al., 2007). For four QTL (3A_M, 583 

6A_M, 6D_M and 7A_M), we found co-localization between the mean flowering times QTL and 584 

plasticity parameters QTL, which is typically expected for the allelic sensitivity model (Gutteling et al., 585 

2007; Diouf et al., 2020). Most other QTL were either specific to the mean flowering times (e.g. 586 

1B_M, 1C_M and 7A_F) or to one of the plasticity parameters (e.g. 4D_F and6B_M), which is 587 

consistent with the gene-regulation hypothesis. Therefore, in the population and environments 588 

studied, we found a co-occurrence of the two models in the genetic architecture of flowering time, 589 

which is consistent with previous reports on flowering time and other traits in other crop species 590 

(Lacaze et al., 2009; Gage et al., 2017; Kusmec et al., 2017; Diouf et al., 2020; Jin et al., 2023).  591 

 592 

As cultivated strawberry is an octoploid species (Edger et al., 2019; Gaston et al., 2020), we may 593 

hypothesize that strawberry utilizes various homoeoalleles to regulate the timing of flowering 594 

depending on the environment, as previously proposed for the control of fruit quality traits 595 

(Lerceteau-Köhler et al., 2012). This polyploid plasticity has been postulated to play a considerable 596 

role in the evolution of polyploid crop species (Jackson and Chen, 2010). This hypothesis would have 597 

far-reaching implications in strawberry breeding as different homoeoalleles of a same gene carried 598 

by different chromosomes could contribute to the timing of flowering in changing environmental 599 

conditions. However, in strawberry, genomic redundancy does not necessarily translate into greater 600 

trait plasticity as previously shown by a study on the influence of polyploidy on the environmental 601 

fitness of a series of diploid and polyploid strawberry species (Wei et al., 2019). 602 

 603 

TFL1, a likely candidate gene underlying the 6D_M QTL. 604 

 605 

Several flowering-related genes could be found in the intervals of the three QTL (3A_M, 6A_M, and 606 

6D_M) for which we observed co-localizations between the overall mean flowering times and 607 

plasticity parameters. Among these, 3A_M and 6D_M QTL are both sensitive to temperature. The A. 608 

thaliana homologous of FaCEN-like candidate gene underlying the 3A_M QTL has been shown to 609 

prolong vegetative growth and consequently delays flowering (Amaya et al., 1999). The A. thaliana 610 
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homolog of the FaFRI-like candidate gene that is also found in the 3A_M QTL encodes a transcription 611 

factor that positively regulates the expression of FLOWERING LOCUS C (FLC) and plays a role in the 612 

regulation of natural variation in flowering time in A. thaliana (Michaels et al., 2004). Interestingly, 613 

Zhu et al. (2021) suggested that a temperature-controlled nuclear condensation mechanism 614 

modulates the FRI activation of FLC transcription, thus contributing to the repression of flowering. 615 

The FaFY and FaFPA candidate genes found in the 6A_M QTL are both known to play a role in A. 616 

thaliana in the regulation of flowering time in the autonomous flowering pathway by acting on FLC 617 

(Koornneef et al., 1991, Cheng et al., 2017). 618 

 619 

The FaTFL1 candidate gene underlying the LG6D_M QTL belongs to the CENTRORADIALIS/TERMINAL 620 

FLOWER 1/SELF-PRUNING (CETS) family which plays a pivotal role in either activating or repressing 621 

flowering (Wickland and Hanzawa, 2015). The role of TFL1 proteins as major floral repressors is 622 

conserved in several species, including tomato (Pnueli et al., 1998) and strawberry (Iwata et al., 2012; 623 

Nakano et al., 2015; Koskela et al., 2016). To date, in the diploid strawberry Fragaria vesca, the only 624 

study on the genetic architecture of flowering time (Samad et al., 2017) was unable to highlight the 625 

role of FvTFL1 in the variation of this trait, as all the genotypes studied were Fvtfl1 PF mutants. 626 

However, FvTFL1 probably plays a role in regulating the flowering time in F. vesca, as its expression is 627 

regulated by temperature, being down-regulated at cool temperatures (<13°C) and up-regulated at 628 

higher temperatures (23°C); moreover, these features are independent of photoperiod (Rantanen et 629 

al., 2015). In cultivated strawberry, FaTFL1 sensitivity to temperature has been shown to vary 630 

according to the genotype: in ‘Elsanta’, FaTFL1 expression was increased from 9°C to 21°C whereas 631 

the temperature had no effect in ‘Glima’ (Koskela et al., 2016). We can assume that one of the two 632 

FaTFL1 homoeoalleles located in the LG6D_M QTL is expressed more in subtropical conditions where 633 

temperatures are higher; consequently, this FaTFL1 allele would delay flowering more significantly in 634 

subtropical conditions than in cold temperature conditions. Future studies in controlled conditions 635 

will test this hypothesis, for example by carrying out a RNAseq analysis of plant tissues (leaf and bud) 636 

collected from genotypes carrying different FaTFL1 alleles and grown at different temperatures. 637 

 638 

Conclusion 639 

In the context of climate change, it is necessary to uncover the genetic architecture of the plasticity 640 

of complex traits in cultivated species. Here, in a concerted European effort, we studied flowering 641 

time, a trait that is highly sensitive to the environment, and showed that temperature is the most 642 

significant driver of this trait in cultivated strawberry. The detection of several QTL and the 643 

identification of underlying candidate genes associated with flowering time plasticity will help to 644 

better understand the molecular mechanisms responsible for variations in flowering time and select 645 
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superior strawberry varieties that are well suited to changing environmental conditions. To this end, 646 

we designed the breeder-friendly genetic marker KASP_6D for a major temperature-sensitive QTL, 647 

which will accelerate MAS selection for flowering time in cultivated strawberry. Our study will have 648 

far-reaching implications for the selection of new strawberry varieties adapted not only to the wide 649 

differences in climatic conditions found in Europe, but also to countries with tropical/sub-tropical 650 

climates where strawberry production is expanding rapidly. 651 

  652 
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Tables 

 

Table 1. Models for predicting flowering date as a function of temperature, photoperiod and/or 

global radiation: GDD, Triangular, Sigmoid, Wang. For photoperiod and global radiation, calculation 

of the GDD and triangular models were adapted to these two climatic parameters. Efficiency, ratio 

(SStot-SSres/SStot); RMSE, root mean squared error; t0, starting date in calendar day; SStar, sum 

calculated by the model from t0; Nobs, number of observations; Tb, base temperature; Tmin, 

minimum temperature; Topt, optimum temperature; Tmax, maximum temperature; PPmin, PPopt, 

PPmax or GRmin, GRopt, GRmax for minimum, optimum, maximum of photoperiod or global 

radiation; Temperatures and global radiations are expressed in °C and Watt/m2 respectively. Models 

were calculated with the PMP5 software 

(http://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform). Parameters of 

the models were adapted to the range of values of the climatic factors, Tmean (Tm), Global radiation 

(GR) or Phtoperiod (PP). d and e are Sigmoid model parameters. 

 

Model 
Efficiency 

(%) 
RMSE t0 SStar Nobs 

Tb_Tmin 

/ PPmin 

/ RGmin 

Topt / 

PPopt / 

RGopt 

Tmax 

or 

PPmax 

/ 

RGmax 

d e 

Simple model          
Temperature                   

GDD:Tm 0.85 9.07 1 824.7 918 -1.7      
Triangular:Tm 0.85 9.07 1 31.7 918 -1.8 24.4 34.1  
Sigmoid:Tm 0.85 9.00 1 31.4 918   -0.19 11.32 

Wang:Tm 0.85 9.00 1 30.4 918 -13.6 25.0 34.3  

 
          

Photoperiod          
GDD:PP 0.37 18.63 1 237.2 918 8.0    
Triangular:PP 0.62 14.47 1 47.50 918 7.8 12.10 14.09  
            
Global 

Radiation           

GDD:RG 0.07 22.59 66 12482 918 749.7    
Triangular:RG 0.68 13.06 1 50.8 918 141.9 888.9 2681.2  

 
          

Multiplicative 

models 
                    

GDD:Tm and 

Triangular:PP 
0.85 9.05 1 528.5 918 0.2 13.2 24 

  

GDD:Tm and 

Triangular:RG 
0.79 11.00 16 198.7 918 0.5 1615 2470     
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Table 2. QTL and QEI detected for flowering time in single and multi-environment models and for plasticity parameters. Chr, chromosome; Pos, genetic 

position in cM; ci_lo, lower genetic position in cM of the Bayesian credible interval; ci_hi, upper genetic position in cM of the Bayesian credible interval; 

LOD, logarithm of the odds ratio; a, mean phenotypic difference between the two homozygous loci of the QTL; r², percentage of total phenotypic variance 

explained by the QTL; QEI, QTL-by-Environment Interaction. 

 

                  QTL   QEI 

Environmnent (country 

and year) / parameter 
Map Marker Chr QTL name Pos (cM) 

ci_lo 

(cM) 

ci_hi 

(cM) 
LOD a r² p-value   

LOD 

QEI 
p-value 

Single environment model for flowering time in GDD                       

Spain 
2019 M AX-184271717 3A 3A_M 35.7 32.0 42.0 4.3 118.4 14.4 0.00   - - 

2019 M AX-184039651 6D 6D_M 12.7 8.2 18.0 7.1 148.6 24.0 0.00   - - 

                                

Italy 
2018 M AX-184685694 6D 6D_M 9.1 4.0 14.0 4.7 79.0 17.9 0.00   - - 

2018 M c7A.loc28 7A 7A_M 28.0 14.0 38.0 3.7 56.3 9.0 0.00   - - 

  2019 F AX-184654928 7A 7A_F 37.5 36.0 43.9 3.6 68.4 15.3 0.01   - - 

                                

France 
2018 M AX-184265643 6D 6D_M 7.3 2.8 14.0 4.7 92.2 13.4 0.00   - - 

2018 M AX-184213081 7A 7A_M 21.9 12.1 39.1 2.9 85.5 11.6 0.07   - - 

                                

Germany 

2018 M AX-184558831 6A 6A_M 61.2 50.0 62.0 3.3 22.6 16.2 0.03   - - 

2018 M AX-184857914 6D 6D_M 7.3 0.0 14.6 3.3 19.9 13.0 0.03   - - 

2019 M AX-184019931 6A 6A_M 54.0 48.5 60.0 3.6 42.5 14.3 0.02   - - 

                                

Poland 2019 M AX-184774131 6D 6D_M 18.2 12.7 23.6 3.4 32.9 13.5 0.02   - - 

                                

Plasticity parameters                             
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SlopeTm   M AX-184283141 3A 3A_M 21.2 16.0 26.7 3.6 9.6 12.3 0.02   - - 

SlopeTm   M AX-184019970 6D 6D_M 12.7 5.5 16.0 7.8 13.5 26.3 0.00   - - 

IPCA1 M AX-184492105 6D 6D_M 14.6 9.1 20.0 3.8 2.8 15.9 0.01   - - 

IPCA2  M AX-184862361 6D 6D_M 8.2 2.8 14.0 3.8 2.6 16.0 0.01  - - 

IPCA2  M AX-184213081 7A 7A_M 21.9 14.0 39.1 3.4 2.1 10.4 0.03  - - 

IPCA4  F AX-184922666 4D 4D_F 27.2 22.0 34.0 3.0 1.6 13.0 0.04  - - 

IPCA6 M AX-166507632 6A 6A_M 52.2 46.7 57.6 3.2 1.3 13.8 0.03   - - 

IPCA7  M AX-184122477 6B 6B_M 39.6 33.3 44.0 3.6 0.5 15.3 0.01  - - 

                                

Multi-environment model                           

    M AX-184561564 1B 1B_M 42.1 37.5 54.8 4.0 7.5 1.3 0.04   - ns 

    M AX-184623363 1C 1C_M 17.2 7.3 25.4 4.3 29.9 1.5 0.02   - ns 

    M AX-184291002 2C 2C_M 13.8 8.3 14.7 6.4 31.5 1.7 0.00   2.1 0.05 

    M c3A.loc20 3A 3A_M 20 11.8 76.2 5.6 33.1 1.4 0.00   2.1 0.05 

    M AX-184872554 6A 6A_M 57.6 54.0 80.0 6.8 35.3 2.3 0.00   - ns 

    M AX-184254843 6D 6D_M 10.9 7.3 14.6 15.2 28.7 4.2 0.00   4.7 0 
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Table 3. Candidate genes identified in the three flowering time QTL common to the overall mean flowering times (multi-environment model) and the 

plasticity parameters. 

 

QTL position 
Position on 

Camarosa genome 

Position on Royal Royce 

genome 

Candidate 

gene 

ID on Camarosa 

genome  

ID on Royal 

Royce genome 

Corresponding ID 

on diploid genome 
Arabidopsis 

LG3A 9077738-21022370 9867318-22377776 
CEN-

like/ATC 
FxaC_9g27230 Fxa3Ag102363 FvH4_3g24700 AT2G27550 

      FRI-like1 FxaC_9g28150 Fxa3Ag102288 FvH4_3g24000 AT5G16320 

LG6A 7331233-11484453 24040354-27479667 FY-like  FxaC_21g17390 Fxa6Ag103856 FvH4_6g22190 AT5G13480 

      FPA-like FxaC_21g17211 Fxa6Ag103868 FvH4_6g40190 AT4G12640 

LG6D 11903312-15757612 9377205-13301702 TFL1 FxaC_24g24110 Fxa6Dg101555 FvH4_6g18480 AT5G03840 
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Figure legends 

 

Figure 1. Environment description and flowering time of the ‘Candonga’ x ‘Senga Sengana’ 

segregating population in nine environments.  

(A) Location and latitudes of the five countries in which experimental trials were carried out. 

(B) Clustering of the nine experimental environments according to the six environmental covariates 

measured from the 1
st

 of January until end of flowering. 

(C) Three genotypes, ‘Candonga’, ‘Senga Sengana’ and ‘H062’ under three environments in 2018 

(France, Spain and Germany).  

(D) Box plots showing the flowering time (calendar days) for the nine environments.  

(E) Pairwise Spearman correlation values (r) between flowering time (calendar days) in the nine 

environments. The r values are represented by coloured circles whose size varies according to their 

value. Crossed-out circles indicate non-significant correlations (p-value > 0.05).  

SP, Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 respectively), 

years of experimentations. Sites are ordered by increasing order of latitude. 

 

Figure 2. Reaction norms and analyses of variance for flowering time. 

(A-B) Reaction norm for flowering time expressed in calendar days (A) or Growing Degree-Days (GDD) 

(B). The nine environments are ranked in increasing order of flowering time. Each line connects the 

flowering time values of individuals across environments. Red and blue lines represent ‘Candonga’ 

and ‘Senga Sengana’ respectively.  

(C-D) Variance partitioning of flowering time (calendar days (C) and GDD (D)) by the linear mixed 

model for the nine environments or for each country. 

SP, Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 respectively), 

years of experimentations. 

 

Figure 3. Distributions of plasticity parameters for all individuals and parents in the segregating 

population for flowering time.  

(A) Histogram distribution of AMMI Stability Values (ASV) calculated for each genotype as the relative 

influence of IPCA1 and IPCA2 scores based on the sum of squares of their interaction. 

(B-C) Slopes with Finlay–Wilkinson and factorial regression models for flowering time (GDD). 

Regressions of phenotypic performances of genotypes on environmental index (B) or on mean 

temperature (C). ‘Candonga’, ‘Senga Sengana’, ‘H102’ (example of a late flowering genotype) and 

‘H056’ (example of an early flowering genotype) are plotted as red, blue, purple and orange lines, 

respectively.  
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SP, Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 respectively), 

years of experimentations. 

 

Figure 4. Effects of flowering time QTL and QTL-by-Environment Interactions (QEI).  

(A) Position of flowering time QTL detected for each environment (in black), for plasticity parameters 

(slope_Tmean, ICPA1, IPCA2, IPCA4, IPCA6, ICPA7 in purple), and for the overall mean flowering time 

across the nine environments (in green) obtained using the multi-environment model (MEM). 

Significant QEI in the MEM are written in red. Linkage groups (LG) are ordered by male and female 

linkage maps. Red lines, Bayesian credible intervals common to the different QTL detected in 3A_M, 

6A_M and 6D_M QTL. 

(B) Venn diagram of QTL detected for flowering time and plasticity parameters. Mean: QTL detected 

by environment for the mean flowering times or with the MEM for the overall flowering time; 

Plasticity parameters: QTL detected for slope_Tmean (slopeTm), ICPA1, IPCA2, IPCA4, IPCA6, ICPA7; 

QEI: QTL-by-Environment Interactions detected with the MEM. QTL detected for the overall mean 

with MEM are in bold. 

(C) LOD scores of QTL and QEI obtained for the multi-environment model: in green the LOD curve for 

main and interactive effects, in red the LOD curve for the interactive term alone. Thresholds, α = 5%. 

(D) Variation in QTL effects for flowering time. Only QTL detected by environment are represented (α 

= 5%). 

QTL are named according to the LG where they were detected. M and F, male and female linkage 

maps respectively. SP, Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 

respectively), years of experimentations. 

 

Figure 5. Allelic effects of flowering time QTL. 

(A) Effect of the 6D_M QTL on flowering time according to mean temperature calculated from the 1
st

 

of January until end of flowering. QTL effects: significant (black point) or non-significant (grey point). 

(B) Effect of alleles of the three major QTL (respectively 6D_M, 3A_M, 6A_M) on flowering time 

(GDD). Significant pairwise differences levels between allelic classes at the three markers are 

indicated by stars following a Kruskal-Wallis test (ns, non-significant). 

(C) Allele Specific PCR (KASP) assay developed on the 6D. The green and purple dots represent the 

homozygous genotypes (C/C and T/T) and the orange dot represents heterozygous genotypes. The 

gray dots represent the non-template control. 

(D) Effect of the KASP_6D marker on flowering time in the ‘Candonga’ x ‘Senga Sengana’ segregating 

population (left) and in a set of 94 genotypes (right). 
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(D) Allelic effect of the KASP_6D marker on flowering time in the ‘Candonga’ x ‘Senga Sengana’ 

segregating population (left) and in a set of 94 genotypes (right). 
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Figure 1. Environment description and flowering time of the ‘Candonga’ x ‘Senga Sengana’ segregating population in
nine environments.
(A) Location and latitudes of the five countries in which experimental trials were carried out.
(B) Clustering of the nine experimental environments according to the six environmental covariates measured from the
1st of January until end of flowering.
(C) Three genotypes, ‘Candonga’, ‘Senga Sengana’ and ‘H062’ under three environments in 2018 (France, Spain and
Germany).
(D) Box plots showing the flowering time (calendar days) for the nine environments.
(E) Pairwise Spearman correlation values (r) between flowering time (calendar days) in the nine environments. The r
values are represented by coloured circles whose size varies according to their value. Crossed-out circles indicate non-
significant correlations (p-value > 0.05).
SP, Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 respectively), years of
experimentations. Sites are ordered by increasing order of latitude.
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Figure 2. Reaction norms and analyses of variance for flowering time.
(A-B) Reaction norm for flowering time expressed in calendar days (A) or Growing Degree-Days (GDD) (B). The nine
environments are ranked in increasing order of flowering time. Each line connects the flowering time values of individuals
across environments. Red and blue lines represent ‘Candonga’ and ‘Senga Sengana’ respectively.
(C-D) Variance partitioning of flowering time (calendar days (C) and GDD (D)) by the linear mixed model for the nine
environments or for each country.
SP, Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 respectively), years of
experimentations.
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Figure 3. Distributions of plasticity parameters for all individuals and parents in the segregating population for
flowering time.
(A) Histogram distribution of AMMI Stability Values (ASV) calculated for each genotype as the relative influence of
IPCA1 and IPCA2 scores based on the sum of squares of their interaction.
(B-C) Slopes with Finlay–Wilkinson and factorial regression models for flowering time (GDD). Regressions of
phenotypic performances of genotypes on environmental index (B) or on mean temperature (C). ‘Candonga’, ‘Senga
Sengana’, ‘H102’ (example of a late flowering genotype) and ‘H056’ (example of an early flowering genotype) are
plotted as red, blue, purple and orange lines, respectively.
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Female LG

Figure 4. Effects of flowering time QTL and QTL-by-Environment Interactions (QEI).
(A) Position of flowering time QTL detected for each environment (in black), for plasticity parameters (slope_Tmean, ICPA1,
IPCA2, IPCA4, IPCA6, ICPA7 in purple), and for the overall mean flowering time across the nine environments (in green)
obtained using the multi-environment model (MEM). Significant QEI in the MEM are written in red. Linkage groups (LG) are
ordered by male and female linkage maps. Red lines, Bayesian credible intervals common to the different QTL detected in
3A_M, 6A_M and 6D_M QTL.
(B) Venn diagram of QTL detected for flowering time and plasticity parameters. Mean: QTL detected by environment for the
mean flowering times or with the MEM for the overall flowering time; Plasticity parameters: QTL detected for slope_Tmean
(slopeTm), ICPA1, IPCA2, IPCA4, IPCA6, ICPA7; QEI: QTL-by-Environment Interactions detected with the MEM. QTL detected
for the overall mean with MEM are in bold.
(C) LOD scores of QTL and QEI obtained for the multi-environment model: in green the LOD curve for main and interactive
effects, in red the LOD curve for the interactive term alone. Thresholds, α = 5%.
(D) Variation in QTL effects for flowering time. Only QTL detected by environment are represented (α = 5%).
QTL are named according to the LG where they were detected. M and F, male and female linkage maps respectively. SP,
Spain, IT, Italy, FR, France, GE, Germany, PL, Poland. 2018 and 2019 (18 and 19 respectively), years of experimentations.
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Figure 5. Allelic effects of flowering time QTL.
(A) Effect of the 6D_M QTL on flowering time according to mean temperature calculated from the 1st of January until end
of flowering. QTL effects: significant (black point) or non-significant (grey point).
(B) Effect of alleles of the three major QTL (respectively 6D_M, 3A_M, 6A_M) on flowering time (GDD). Significant pairwise
differences levels between allelic classes at the three markers are indicated by stars following a Kruskal-Wallis test (ns, non-
significant).
(C) Allele Specific PCR (KASP) assay developed on the 6D. The green and purple dots represent the homozygous genotypes
(C/C and T/T) and the orange dot represents heterozygous genotypes. The gray dots represent the non-template control.
(D) Effect of the KASP_6D marker on flowering time in the ‘Candonga’ x ‘Senga Sengana’ segregating population (left) and
in a set of 94 genotypes (right).
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