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Obesity and cardiometabolic disease often, but not always, coincide. Distinguish-
ing subpopulations within which cardiometabolic risk diverges from the risk
expected for agiven body mass index (BMI) may facilitate precision prevention of
cardiometabolic diseases. Accordingly, we performed unsupervised clustering
infour European population-based cohorts (V=173,000). We detected five
discordant profiles consisting of individuals with cardiometabolic biomarkers
higher or lower than expected given their BMI, which generally increases
diseaserisk, in total representing -20% of the total population. Persons with
discordant profiles differed from concordant individualsin prevalence and
future risk of major adverse cardiovascular events (MACE) and type 2 diabetes.
Subtle BMI-discordancesin biomarkers affected disease risk. For instance,
a10% higher probability of having a discordant lipid profile was associated with
a 5% higher risk of MACE (hazard ratioinwomen1.05, 95% confidence interval
1.03,1.06, P=4.19 x 107°; hazard ratio in men1.05, 95% confidence interval
1.04,1.06, P=9.33 x10™). Multivariate prediction models for MACE and type 2
diabetes performed better when incorporating discordant profile information
(likelihood ratio test P< 0.001). This enhancement represents an additional
netbenefit of 4-15 additional correct interventions and 37-135 additional
unnecessary interventions correctly avoided for every 10,000 individuals tested.

Obesity is steadily rising worldwide, with one in five of the world’s popu-
lation, 1.5 billion people, projected to have obesity by 2030 (ref. 1),
leading to higher risk of life-threatening conditions such as cardio-
vascular diseases (CVD) and type 2 diabetes (T2D)?. Along with the
sheer numbers of those affected, prevention and care in obesity are
further complicated by the complex and heterogeneous nature of these
associations. This variationin comorbidities and phenotypes suggests
thatinformative subclassification of obesity might facilitate precision
medicine approaches for prevention and treatment.

BMI, the common metric used by epidemiologists, health profession-
alsand othersto characterize obesity, is easy to obtainand correlates well
atapopulation level with gold-standard measures of adiposity’. However,
BMlisinsufficient foraccurate classification of the disease of obesity atan
individual level because people with similar BMIs often exhibit disparate
health risks*. This is partially because BMI is an imperfect measure of
excess adiposity that does not distinguish the proportion or distribu-
tion of fat mass and fat-free mass in the body’. Thus, clinicians use BMI
for screening, although always in conjunction with other risk measures®.
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Fig.1|Study workflow. Flowchart depicting the overall steps in our analysis of BMI-biomarker discordance, with details about the ensemble of algorithms used to
partition BMI-biomarker discordance into probabilistic profiles. PCA, principal components analysis.

There are established inconsistenciesin the relationship between
BMI and cardiometabolic disease”®. Common signs of metabolic dys-
function such as insulin resistance and hypertension are absent in
around 7% of individuals whose BMI is above the threshold for obesity’.
Moreover, about 20% of individuals have multiple cardiometabolic
risk factors despite being within the normal weight range of BMI'.
Certainindividuals are particularly sensitive to lifestyle exposures that
impact BMI and CVD™. There are also diverse genetically determined
obesity phenotypes, each conveying distinct metabolic signatures and
varying levels of CVD risk'*"*. Although these observations suggest the
existence of subgroups at disproportionately higher or lower risk
of CVD, they also underscore the challenges involved in accurately
identifying individuals in these subgroups.

In this analysis, we used an ensemble of clustering techniques
to decompose the general population into profiles that represent
phenotypic ‘discordance’ deviating from the ‘concordant’ profile,
which represents the linear relationship between clinical measures
and BMI. Instead of categorically assigning individuals to specific
profiles, each individual is assigned allocation probabilities for all
profiles. Together these profiles present a more systematic evaluation
of the various obesity-related cardiometabolic phenotypes than has
previously been established. We explore the characteristics of these
profiles and their potential clinical implications for cardiometabolic
riskin four large independent cohorts across Europe.

Results

BMI-biomarker discordance

An overview of the analysis pipeline is depicted in Fig. 1. We defined
BMI-biomarker discordance as the residuals from the BMI-based pre-
dictions while adjusting for age and smoking status. To define this
discordance, we used data at recruitment from the European ancestry
subset of the UK Biobank (UKB) (N =145,111) as our discovery dataset to
identify BMI-discordant phenotypes. We did not use any BMI thresh-
old for inclusion. We selected 10 BMI-related biomarkers routinely
used in the clinical setting for risk stratification, each representing
readouts from different biological processes known to be affected by
obesity: fasting glucose (FG), representing glycemia; lipid fractions
(high-density lipoprotein (HDL), low-density lipoprotein (LDL), tri-
glycerides (TG)), representing lipid metabolism; systolic and dias-
tolic blood pressures, representing hemodynamic function; serum
creatinine, representing renal function; alanine transaminase (ALT),

representing hepatic function; C-reactive protein (CRP), representing
theinflammatory system; and waist-to-hip ratio, representing adipose
distribution.Wethenconductedsex-specificanalysestoquantifytheBMI-
biomarker relationships (Supplementary Fig.1) and BMI-discordance
for individual measurements. A significantly higher proportion
ofindividuals displayed substantial discordance than the anticipated
proportion under a normal distribution around BMI-based expec-
tations (expected proportion = 5%, observed proportion =10.3%;
Pbinomial < 0001)

Visualization and clustering of discordant profiles
We constructed a proximity network using biomarker deviations and
visualized this network in two-dimensional (2D) projections using the
uniform manifold approximation and projection (UMAP) method™.
Individuals with substantial discordance appear to cluster within sub-
groups, a pattern absent in projections under a normal distribution
(Supplementary Figs.2 and 3). Linear dimensionality reductions (that s,
principal component analysis) were unable to capture this discordance,
likely because of the relatively low proportion of variance explained
by the first two principal components (-35%) and the monotonicity of
the cumulative variance explained (Supplementary Fig. 4).
Toascertainthe subgroups observed inthe UMAP projections, we
deployed a soft-clustering algorithm on UMAP’s underlying proxim-
ity network. Briefly, this method converts partitions produced by a
series of iterative graph-clustering techniques to a Gaussian mixture
distribution. Individuals were thus assigned allocation probabilities to
allsubgroups rather than categorical allocations to a single subgroup.
We used these allocation probabilities in all downstream analyses.
To further validate the identified subgroups, we conducted the
sameanalysisinthreeindependentlarge population-based cohorts: the
Maastricht Study (TMS, N =3,175), the Rotterdam Study (RS, N=9,993)
and the Gutenberg Health Study (GHS, N =14,654). Baseline charac-
teristics are shown in Supplementary Tables 1-3 and Extended Data
Fig.1. The effects of BMI-biomarker relationships within each cohort
are shown in Supplementary Fig. 5 and Supplementary Table 4. In all
UMAP projections obtained, we observed a pattern of ‘spikes’ deviating
froma central ‘cloud’ where most individuals were located, which cor-
responded toindividuals with BMI-biomarker discordance (Extended
DataFig. 2). After determining which profiles were consistently repli-
cated across all cohorts (Methods and Extended Data Figs. 3 and 4),
we obtained a final partition that included a concordant profile and
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four discordant profiles in men and five in women (Fig. 2a,b). The
medianallocation probability for anindividual’s highest scoring profile
exceeded 90% (interquartile range = 89-99%), and the relative entropy
of this final partition was 0.85 for men and 0.88 for women, suggesting
that the profiles in these models were well discriminated.

To assess the quality of the partition, we compared the final
partition with partitions derived from diverse classes of flexible
probabilistic clustering algorithms applied to the deviation data. We
performed centroid-based (Gaussian mixture), boundary-based (arche-
types) and density-based (HDBSCAN) algorithms. The best partitions
obtained from these other algorithms had lower relative entropies
in comparison with our final partition (Supplementary Table 5) and
were unable to accurately identify the subgroups we observed in the
UMAP projections (Supplementary Figs. 6-14).

We observed that discordant profiles conveyed multivariate
profiles of discordance. They differed from the concordant profile
in the values of multiple biomarkers (Supplementary Figs. 15-17
and Supplementary Tables 6 and 7), the magnitude to which the bio-
markers deviated from the expected value given their BMI (Fig. 2¢)
and the correlation among these deviations (Supplementary Fig. 18).
Most individuals (-80%) had apredominantly concordant phenotypic
profile, with biomarkers within the normal distribution of the expected
values for their BMIs, which we termed the ‘baseline concordant’ (BC)
profile (Fig. 2b and Supplementary Table 8). Approximately 8% of
women displayed a discordant hypertensive profile (DHT), with blood
pressure values greater than expected for their BMIs. This profile
was not replicated in men. Around 5% of women and 7% of men showed
adiscordant adverse lipid profile (DAL), characterized by higher TG,
lower HDL and higher LDL than expected for their BMIs. Profiles
of discordant liver transaminase (DLT) and discordant inflammatory
state (DIS), respectively characterized by higher-than-expected ALT
and CRP, were each observed in 4-5% of individuals in both sexes.
Lastly, about 2.5% of individuals had a discordant hyperglycemic profile
(DHG), with discordantly high FGlevels, correlating with discordantly
lower LDL levels. Notably, individuals with a concordant profile formed
a less tightly connected subgroup compared with the discordant
profiles, as measured by the transitivity index (Supplementary Table 9),
suggesting that discordant profiles exhibit more cohesive biomarker
patterns. To better understand how biomarker variation corresponds
todiscordant profile probabilities, we show in Supplementary Table 10
the biomarker values corresponding to varying levels of discordant
profile probabilities for an individual with a fixed age (55 years) and
BMI (30 kg/m™) who do not smoke.

We found that discordant and concordant profiles also dif-
fered in their BMI-biomarker relationships (that is, how biomarkers
change when BMI increases, using profile allocation probabilities as
regression weights to obtain profile-specific estimates). Forexample,
we found thatinboth the male and female DAL profiles, a unitincrease
in BMI had around twice the effect on TG compared with the effect
observed in BC (Fig. 3, Supplementary Fig. 19 and Supplementary
Table11).

We found that an overall favorable biomarker discordance (that
is, allbiomarkers at lower levels than expected for agiven BMI, except
HDL at higher levels) was rare (0.92% females, 0.81% males) and this
was not distinct fromthe concordant profile (Supplementary Fig. 20),
implying that this is part of the normal distribution of concordance.

Discordant profiles and cardiometabolic disease prevalence

We estimated profile-specific prevalence of various cardiometabolic
comorbidities associated with the biomarkers selected using alloca-
tion probabilities as weights (Fig. 4a and Supplementary Table 12).
Whereas disease cases were predominantly of a concordant profile,
disease prevalences in discordant and concordant profiles differed
substantially from one another. For example, after a 5% false discovery
rate (FDR) correction, women with a DHG profile were 3.26 times more

likely to have suffered from coronary heart disease (CHD) compared
with BC (95% confidence intervals (CI) 2.79, 3.82). There was also an
enrichment of CHD cases in DIS compared with BC (odds ratio (OR)
1.50,95% C11.25,1.80). The same pattern of CHD enrichment was found
inmen (ORin DHG 2.59,95% C12.32,2.88; ORin DIS1.32, 95% CI 1.16,
1.50). Notably, there were fewer cases of CHD in DAL compared with
BCinbothsexes (ORinwomen 0.79,95% C10.64, 0.98; ORinmen 0.67,
95% C10.60, 0.75). We also observed a depletion of CHD cases within
the DHT profile inwomen (OR 0.47,95% CI1 0.39, 0.58).

Aside from the expected enrichment of cases of T2D in DHG com-
pared with BC (>30 times greater prevalence than in the concordant
profile in both sexes), the DIS and DLT profiles were also enriched in
womenwithT2D (ORinDIS:1.62,95% C11.32,1.98; ORin DLT:1.68,95%
Cl1.42,2.00). Conversely, the prevalence of T2D was lower in DAL than
BCinmen (OR 0.59, 95% C10.50, 0.70) but not in women (OR 1.15, 95%
C10.93,1.43). The prevalence of T2D was also lower in women classi-
fied as DHT than those classified asBC (OR 0.18,95% C10.12,0.26). The
subset of individuals who were free of cardiometabolic conditions
(CHD, stroke, type 1 diabetes (T1D), T2D, hypertension, liver failure,
rheumatoid arthritis), had similar profile allocations, with the excep-
tion of lower DHG profile probabilities (Fig. 4b). We also assessed
enrichment of the metabolic syndrome across profiles, using the World
Health Organization criteria” (Supplementary Fig. 21and Supplemen-
tary Table 13). While most individuals with the metabolic syndrome
had a concordant profile (>60%), we found statistically significant
enrichment for individuals with the metabolic syndromein discordant
compared to the concordant profiles, particularly in DHG (more than
30-foldincrease). Two exceptions were the DHT profilein women and
the DAL profilein men, which were associated with lower prevalence of
metabolic syndrome compared with the concordant profile.

We investigated medication use within each profile (Fig. 4c
and Supplementary Table 14) and showed enrichment for insulin,
antihypertensive and lipid-lowering therapy use in the DHG profile.
For example, insulin therapy was >30 times more frequent in the dis-
cordant compared with the concordant profile. Fewer menwitha DAL
profile were medicated with lipid-lowering medication compared with
the concordant profile (OR 0.64,95% C10.59, 0.68). The observed dis-
ease associations were largely unmodified after adjustment for these
medications, except for the OR estimates for the DHG profile, which
were significantly attenuated (Fig. 4a).

Discordant profiles and cardiometabolic disease incidence

To evaluate the effect of discordant profiles on future risk of disease,
we used longitudinal data derived from the clinical records of up to
155,000 individuals from UKB, RS and GHS, who were free from the
index disease at baseline (Supplementary Table 15). We first derived
crudeincidence estimates of MACE and T2D at 5-10 years of follow-up
for each profile applying the same weighted approach as previously
described (Supplementary Table 16). After multiple test correction,
the DHG and DIS profiles were associated with higher risk of MACE
compared with BC across sexes (10-year DHG relative risk (RR) 1.96,
95% Cl11.66,2.31;10-year DISRR 1.46, 95% C11.25,1.72). The female, but
not the male, DAL profile was associated with higher MACE relative to
BC (10-year female RR1.40,95% CI1.21,1.61;10-year male RR 0.96,95%
C10.87,1.07). In general, all discordant profiles were associated with
higher risk of incident T2D compared with BC, particularly the
DHG profile, which displayed a 6-13-fold increase in T2D risk. The only
exception was the female DHT profile, which was associated with lower
risk of T2D compared with BC (10-year RR 0.46, 95% C1 0.35, 0.60).

To assess the added clinical value of these profiles for MACE
prediction, we added profile allocation probabilities to sex-specific
survival models. The predictor variables in these models consisted
of all the biomarkers used to produce the initial clustering partition,
as well as all variables and interactions used in the current CVD risk
stratification tool endorsed by the European Society of Cardiology
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Fig. 2| Characteristics of concordant and discordant profiles. Discordant
profiles discovered in the UKB and robustly replicated across three independent
cohorts.a, UMAP 2D projection. Colors denote profile allocations. b, Cluster
weights. ¢, Forest plot of average biomarker residuals characterizing each

profile. Points and error bars represent estimates and 95% confidence intervals of

average residual values of each biomarker. The dashed line represents a residual
of 0. Female sample sizes: UKB = 77,207; TMS =1,542; RS = 5,704; GHS = 7,301.
Male sample sizes: UKB = 67,904; TMS =1,633; RS = 4,289; GHS = 7,353. DBP,
diastolic blood pressure; SBP, systolic blood pressure; SCR, serum creatinine;
WHR, waist-to-hip ratio.
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(SCORE2)"*", We also included in these models the baseline comor-
bidities we evaluated in Fig. 3a (see Supplementary Table 17 for vari-
ablelist). Through the comparison of nested models, we showed that
adding profile information improved the predictive ability of these
prediction models in UKB, especially in men, as shown by significant
likelihood ratio tests and difference in C-statistics (Table 1). The addi-
tional explained variation in MACE attributed to the profiles in UKB
ranged from 1.4% to 5.4%. Although profile information explained
additional variance in RS and GHS, the likelihood ratio tests were not
statistically significant.

Because an individual’s allocation probability for any given
profile is determined by the biomarkers and BMI, discordant profile
estimates from these survival models reflect complex interactions
between profiles, biomarkers and BMI. These interactions modify
the associations between biomarkers and risk, conditional on their
specific profile of discordance with BMI (Supplementary Fig. 22 and
Supplementary Table 18). These interaction estimates were also robust
toregularization using the Lasso penalty (Supplementary Fig.23). To
better understand these profile estimates, we derived the expected
change inrisk of MACE in a disease-free, 55-year-old individual, with
aBMI of 30 kg/m2, when their profile allocation probability is raised
by 10% for any given profile, with a corresponding decrease in the
probability of having a concordant profile (Fig. 5, Supplementary
Fig. 24 and Supplementary Table 19). After multiple test correction,
anincreased probability for the DAL profile was associated with higher
risk of MACE compared with BC across sexes (10-year hazard ratio
(HR) inwomen 1.04, 95% C11.03,1.06; 10-year HR in men 1.05, 95% CI
1.04,1.06). By contrast, increased probability for the DHG profile was
associated with lower risk of MACE compared with BC (10-year HR in
both sexes 0.95,95% C10.93,0.98).

Using the same approach, we determined the clinical value of the
discordant profiles by estimating the 5- and 10-year risk of incident
diabetesinindividuals without diabetes. We found that adding profile
information only marginally increased the variance explained in dia-
betes progression in UKB. However, in RS, where the median glucose
values were higher, the fraction increased to 8-12% (likelihood ratio
P<0.001). After multiple test correction, only the female DHG profile
remained associated with diabetes progression. A10% increase in
the probability of having a DHG profile at the expense of lowering
the probability of having a concordant profile was associated with
a20-60% increase in risk of progressing to diabetes compared with
individualsinBC.

We then evaluated the added net benefit of discordant profiles
using decision curves to determine whether conducting interventions
to prevent MACE is likely to be worthwhile (Fig. 6a and Supplementary
Table 20)'®%°, For this, we compared the prediction models created
using only baseline data (including baseline biomarker values and other
relevant clinical characteristics) with models that additionally incor-
porated profile estimations. Both models with and without discordant
profile information generally outperformed default strategies of no
intervention or universalintervention at various thresholds of disease
probability up to15%. Atathreshold of a10%10-year MACE risk (tradi-
tionally used to determine statin initiation, and equivalent to accept
intervening nine individuals without the disease (false positives) to
prevent one event (true positive)), adding profile informationyielded
an average net benefit of 4 additional true positives and 37 additional
true negatives per 10,000 men compared with the baseline model. To
benchmark these values against a contemporary standard, we com-
puted the additional net benefit of LDL, an established intervention
target for MACE, over and above the predictive value of chronological
age; theinclusion of LDLresulted in 5 additional true positives and 42
additional true negatives per 10,000 male individuals tested. Thus,
discordancy and LDL can be considered of comparable value for the
prediction of MACE. In women, adding discordant profile information
did notyield any material net benefit.

Discordant profile information had the highest utility in deter-
mining women at risk of diabetes progression. Using a 10-year risk
threshold of 10%, we found that discordant profile information led
to a net benefit of 15 additional true positives and 135 additional true
negatives per 10,000 women compared with the baseline model.
In men, the additional net benefit was 4 additional true positives and
33 additional true negatives per 10,000 men.

We next examined how the benefits of adding discordant profile
information were distributed across profiles (Fig. 6b). Net benefits
in MACE were concentrated in the BC and DAL profiles in both men
and women. Notably, we observed improvements in net benefitin the
DIS profile for men, but in women net benefit declined. For diabetes
progression, we observed improvements in net benefit across all
profiles in women. Conversely, among men, we observed improve-
ments only inthe BC and DIS profiles.

Discordance by ethnicity
We evaluated how the discordant profilesidentified in European popu-
lations were distributed in British Africanand South Asian populations
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Fig. 4| Association of discordant profiles with prevalent comorbidities

and medication. a, OR and 95% Cl of selected conditions in discordant profiles
relative to the concordant profile, unadjusted and adjusted for medication (lipid-
lowering, antidiabetic and antihypertensive). The dashed line represents the
nullassociation. b, OR and 95% Cl of selected medications in discordant profiles

OR relative to BC

relative to the concordant profile. ¢, Comparison of the proportions of concordant
and discordant profiles in individuals without the selected conditions against
allindividuals in UKB. The dashed line represents the null association. Female
sample size = 91,754; male sample size = 81,178. AntiHT, antihypertensives; HT,
hypertension; LipidLower, lipid-lowering medication; RA, rheumatoid arthritis.

in UKB (Nagrican = 4,019, Nyguenasians = 3,388; Supplementary Figs. 25
and 26 and Supplementary Table 21). South Asian individuals had
around four times higher odds of having a DHG profile compared with
people of European ancestry (female OR 3.87, 95% CI1 3.13, 4.72; male
OR4.61,95% CI3.90,5.41). We observed asimilar enrichment of DHG in
the African population, albeit of lesser magnitude (female OR 2.08, 95%
Cl1.65,2.59; male OR 2.54,95% CI12.05, 3.11). South Asian people were
alsomorelikely to have a DAL profile than people of European ancestry
(female OR 1.79, 95% CI 1.49, 2.13, male OR 1.38, 95% CI 1.18, 1.60).
Women of African and South Asian ancestry had higher probabilities
than women of European ancestry of having a DIS profile (OR African
1.39,95% CI11.13,1.68; OR South Asian 1.80, 95% CI 1.45, 2.20). Women
of African ancestry also had higher DHT probabilities than European
women (OR1.25,95% C11.09,1.42).

We observed enrichment of diseases and medication use at
baseline predominantly in the DHG profile compared with the BC
profile, asseeninthe European population (Supplementary Tables 22
and 23). In adjusted survival analyses including discordant profile
information (Supplementary Table 24), we found that in South Asian
men, a 10% higher probability of having a DAL profile was associated
with higher 10-year MACE risk compared with a BC profile (HR 1.10,

95% C11.05,1.15), whereas a 10% higher DHG probability was associ-
ated with lower risk (HR 0.84, 95% CI1 0.74, 0.95), comparable with the
find