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Subclassification of obesity for precision 
prediction of cardiometabolic diseases

Daniel E. Coral    1,25  , Femke Smit    2,25  , Ali Farzaneh    3,25, 
Alexander Gieswinkel    4, Juan Fernandez Tajes1, Thomas Sparsø5, Carl Delfin5, 
Pierre Bauvain6, Kan Wang    3, Marinella Temprosa    7, Diederik De Cock8, 
Jordi Blanch9,10,11,12, José Manuel Fernández-Real    9,10,11,12, Rafael Ramos9,10,11,12, 
M. Kamran Ikram    13, Maria F. Gomez    14, Maryam Kavousi    13, 
Marina Panova-Noeva15,16, Philipp S. Wild    4,16,17,18, Carla van der Kallen    19, 
Michiel Adriaens2, Marleen van Greevenbroek    19, Ilja Arts    2, 
Carel Le Roux    20, Fariba Ahmadizar21,22, Timothy M. Frayling    23, 
Giuseppe N. Giordano1, Ewan R. Pearson    24 & Paul W. Franks    1 

Obesity and cardiometabolic disease often, but not always, coincide. Distinguish­
ing subpopulations within which cardiometabolic risk diverges from the risk 
expected for a given body mass index (BMI) may facilitate precision prevention of 
cardiometabolic diseases. Accordingly, we performed unsupervised clustering 
in four European population-based cohorts (N ≈ 173,000). We detected five 
discordant profiles consisting of individuals with cardiometabolic biomarkers 
higher or lower than expected given their BMI, which generally increases 
disease risk, in total representing ~20% of the total population. Persons with 
discordant profiles differed from concordant individuals in prevalence and 
future risk of major adverse cardiovascular events (MACE) and type 2 diabetes. 
Subtle BMI-discordances in biomarkers affected disease risk. For instance,  
a 10% higher probability of having a discordant lipid profile was associated with  
a 5% higher risk of MACE (hazard ratio in women 1.05, 95% confidence interval  
1.03, 1.06, P = 4.19 × 10−10; hazard ratio in men 1.05, 95% confidence interval 
1.04, 1.06, P = 9.33 × 10−14). Multivariate prediction models for MACE and type 2 
diabetes performed better when incorporating discordant profile information 
(likelihood ratio test P < 0.001). This enhancement represents an additional 
net benefit of 4−15 additional correct interventions and 37−135 additional 
unnecessary interventions correctly avoided for every 10,000 individuals tested.

Obesity is steadily rising worldwide, with one in five of the world’s popu­
lation, 1.5 billion people, projected to have obesity by 2030 (ref. 1),  
leading to higher risk of life-threatening conditions such as cardio­
vascular diseases (CVD) and type 2 diabetes (T2D)2. Along with the 
sheer numbers of those affected, prevention and care in obesity are 
further complicated by the complex and heterogeneous nature of these 
associations. This variation in comorbidities and phenotypes suggests 
that informative subclassification of obesity might facilitate precision 
medicine approaches for prevention and treatment.

BMI, the common metric used by epidemiologists, health profession­
als and others to characterize obesity, is easy to obtain and correlates well 
at a population level with gold-standard measures of adiposity3. However, 
BMI is insufficient for accurate classification of the disease of obesity at an 
individual level because people with similar BMIs often exhibit disparate 
health risks4. This is partially because BMI is an imperfect measure of 
excess adiposity that does not distinguish the proportion or distribu­
tion of fat mass and fat-free mass in the body5. Thus, clinicians use BMI 
for screening, although always in conjunction with other risk measures6.
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representing hepatic function; C-reactive protein (CRP), representing 
the inflammatory system; and waist-to-hip ratio, representing adipose 
distribution. We then conducted sex-specific analyses to quantify the BMI– 
biomarker relationships (Supplementary Fig. 1) and BMI-discordance 
for individual measurements. A significantly higher proportion  
of individuals displayed substantial discordance than the anticipated 
proportion under a normal distribution around BMI-based expec­
tations (expected proportion = 5%, observed proportion = 10.3%;  
Pbinomial < 0.001).

Visualization and clustering of discordant profiles
We constructed a proximity network using biomarker deviations and 
visualized this network in two-dimensional (2D) projections using the 
uniform manifold approximation and projection (UMAP) method14. 
Individuals with substantial discordance appear to cluster within sub­
groups, a pattern absent in projections under a normal distribution 
(Supplementary Figs. 2 and 3). Linear dimensionality reductions (that is, 
principal component analysis) were unable to capture this discordance, 
likely because of the relatively low proportion of variance explained 
by the first two principal components (~35%) and the monotonicity of 
the cumulative variance explained (Supplementary Fig. 4).

To ascertain the subgroups observed in the UMAP projections, we 
deployed a soft-clustering algorithm on UMAP’s underlying proxim­
ity network. Briefly, this method converts partitions produced by a 
series of iterative graph-clustering techniques to a Gaussian mixture 
distribution. Individuals were thus assigned allocation probabilities to 
all subgroups rather than categorical allocations to a single subgroup. 
We used these allocation probabilities in all downstream analyses.

To further validate the identified subgroups, we conducted the 
same analysis in three independent large population-based cohorts: the 
Maastricht Study (TMS, N = 3,175), the Rotterdam Study (RS, N = 9,993) 
and the Gutenberg Health Study (GHS, N = 14,654). Baseline charac­
teristics are shown in Supplementary Tables 1–3 and Extended Data 
Fig. 1. The effects of BMI–biomarker relationships within each cohort 
are shown in Supplementary Fig. 5 and Supplementary Table 4. In all 
UMAP projections obtained, we observed a pattern of ‘spikes’ deviating 
from a central ‘cloud’ where most individuals were located, which cor­
responded to individuals with BMI–biomarker discordance (Extended 
Data Fig. 2). After determining which profiles were consistently repli­
cated across all cohorts (Methods and Extended Data Figs. 3 and 4), 
we obtained a final partition that included a concordant profile and 

There are established inconsistencies in the relationship between 
BMI and cardiometabolic disease7,8. Common signs of metabolic dys­
function such as insulin resistance and hypertension are absent in 
around 7% of individuals whose BMI is above the threshold for obesity9. 
Moreover, about 20% of individuals have multiple cardiometabolic 
risk factors despite being within the normal weight range of BMI10. 
Certain individuals are particularly sensitive to lifestyle exposures that 
impact BMI and CVD11. There are also diverse genetically determined 
obesity phenotypes, each conveying distinct metabolic signatures and 
varying levels of CVD risk12,13. Although these observations suggest the  
existence of subgroups at disproportionately higher or lower risk 
of CVD, they also underscore the challenges involved in accurately  
identifying individuals in these subgroups.

In this analysis, we used an ensemble of clustering techniques  
to decompose the general population into profiles that represent  
phenotypic ‘discordance’ deviating from the ‘concordant’ profile, 
which represents the linear relationship between clinical measures 
and BMI. Instead of categorically assigning individuals to specific 
profiles, each individual is assigned allocation probabilities for all 
profiles. Together these profiles present a more systematic evaluation 
of the various obesity-related cardiometabolic phenotypes than has 
previously been established. We explore the characteristics of these 
profiles and their potential clinical implications for cardiometabolic 
risk in four large independent cohorts across Europe.

Results
BMI–biomarker discordance
An overview of the analysis pipeline is depicted in Fig. 1. We defined 
BMI–biomarker discordance as the residuals from the BMI-based pre­
dictions while adjusting for age and smoking status. To define this 
discordance, we used data at recruitment from the European ancestry 
subset of the UK Biobank (UKB) (N = 145,111) as our discovery dataset to 
identify BMI-discordant phenotypes. We did not use any BMI thresh­
old for inclusion. We selected 10 BMI-related biomarkers routinely 
used in the clinical setting for risk stratification, each representing 
readouts from different biological processes known to be affected by 
obesity: fasting glucose (FG), representing glycemia; lipid fractions 
(high-density lipoprotein (HDL), low-density lipoprotein (LDL), tri­
glycerides (TG)), representing lipid metabolism; systolic and dias­
tolic blood pressures, representing hemodynamic function; serum 
creatinine, representing renal function; alanine transaminase (ALT), 
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Fig. 1 | Study workflow. Flowchart depicting the overall steps in our analysis of BMI–biomarker discordance, with details about the ensemble of algorithms used to 
partition BMI–biomarker discordance into probabilistic profiles. PCA, principal components analysis.
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four discordant profiles in men and five in women (Fig. 2a,b). The 
median allocation probability for an individual’s highest scoring profile 
exceeded 90% (interquartile range = 89–99%), and the relative entropy 
of this final partition was 0.85 for men and 0.88 for women, suggesting 
that the profiles in these models were well discriminated.

To assess the quality of the partition, we compared the final  
partition with partitions derived from diverse classes of flexible 
probabilistic clustering algorithms applied to the deviation data. We 
performed centroid-based (Gaussian mixture), boundary-based (arche­
types) and density-based (HDBSCAN) algorithms. The best partitions 
obtained from these other algorithms had lower relative entropies  
in comparison with our final partition (Supplementary Table 5) and 
were unable to accurately identify the subgroups we observed in the 
UMAP projections (Supplementary Figs. 6–14).

We observed that discordant profiles conveyed multivariate  
profiles of discordance. They differed from the concordant profile 
in the values of multiple biomarkers (Supplementary Figs. 15–17  
and Supplementary Tables 6 and 7), the magnitude to which the bio­
markers deviated from the expected value given their BMI (Fig. 2c) 
and the correlation among these deviations (Supplementary Fig. 18). 
Most individuals (~80%) had a predominantly concordant phenotypic 
profile, with biomarkers within the normal distribution of the expected 
values for their BMIs, which we termed the ‘baseline concordant’ (BC) 
profile (Fig. 2b and Supplementary Table 8). Approximately 8% of 
women displayed a discordant hypertensive profile (DHT), with blood 
pressure values greater than expected for their BMIs. This profile  
was not replicated in men. Around 5% of women and 7% of men showed 
a discordant adverse lipid profile (DAL), characterized by higher TG, 
lower HDL and higher LDL than expected for their BMIs. Profiles  
of discordant liver transaminase (DLT) and discordant inflammatory 
state (DIS), respectively characterized by higher-than-expected ALT 
and CRP, were each observed in 4–5% of individuals in both sexes. 
Lastly, about 2.5% of individuals had a discordant hyperglycemic profile 
(DHG), with discordantly high FG levels, correlating with discordantly 
lower LDL levels. Notably, individuals with a concordant profile formed 
a less tightly connected subgroup compared with the discordant  
profiles, as measured by the transitivity index (Supplementary Table 9), 
suggesting that discordant profiles exhibit more cohesive biomarker 
patterns. To better understand how biomarker variation corresponds 
to discordant profile probabilities, we show in Supplementary Table 10 
the biomarker values corresponding to varying levels of discordant 
profile probabilities for an individual with a fixed age (55 years) and 
BMI (30 kg/m−2) who do not smoke.

We found that discordant and concordant profiles also dif­
fered in their BMI–biomarker relationships (that is, how biomarkers  
change when BMI increases, using profile allocation probabilities as 
regression weights to obtain profile-specific estimates). For example, 
we found that in both the male and female DAL profiles, a unit increase 
in BMI had around twice the effect on TG compared with the effect 
observed in BC (Fig. 3, Supplementary Fig. 19 and Supplementary 
Table 11).

We found that an overall favorable biomarker discordance (that 
is, all biomarkers at lower levels than expected for a given BMI, except 
HDL at higher levels) was rare (0.92% females, 0.81% males) and this 
was not distinct from the concordant profile (Supplementary Fig. 20), 
implying that this is part of the normal distribution of concordance.

Discordant profiles and cardiometabolic disease prevalence
We estimated profile-specific prevalence of various cardiometabolic 
comorbidities associated with the biomarkers selected using alloca­
tion probabilities as weights (Fig. 4a and Supplementary Table 12). 
Whereas disease cases were predominantly of a concordant profile, 
disease prevalences in discordant and concordant profiles differed 
substantially from one another. For example, after a 5% false discovery 
rate (FDR) correction, women with a DHG profile were 3.26 times more 

likely to have suffered from coronary heart disease (CHD) compared 
with BC (95% confidence intervals (CI) 2.79, 3.82). There was also an 
enrichment of CHD cases in DIS compared with BC (odds ratio (OR) 
1.50, 95% CI 1.25, 1.80). The same pattern of CHD enrichment was found 
in men (OR in DHG 2.59, 95% CI 2.32, 2.88; OR in DIS 1.32, 95% CI 1.16, 
1.50). Notably, there were fewer cases of CHD in DAL compared with 
BC in both sexes (OR in women 0.79, 95% CI 0.64, 0.98; OR in men 0.67, 
95% CI 0.60, 0.75). We also observed a depletion of CHD cases within 
the DHT profile in women (OR 0.47, 95% CI 0.39, 0.58).

Aside from the expected enrichment of cases of T2D in DHG com­
pared with BC (>30 times greater prevalence than in the concordant 
profile in both sexes), the DIS and DLT profiles were also enriched in 
women with T2D (OR in DIS: 1.62, 95% CI 1.32, 1.98; OR in DLT: 1.68, 95% 
CI 1.42, 2.00). Conversely, the prevalence of T2D was lower in DAL than 
BC in men (OR 0.59, 95% CI 0.50, 0.70) but not in women (OR 1.15, 95% 
CI 0.93, 1.43). The prevalence of T2D was also lower in women classi­
fied as DHT than those classified as BC (OR 0.18, 95% CI 0.12, 0.26). The 
subset of individuals who were free of cardiometabolic conditions 
(CHD, stroke, type 1 diabetes (T1D), T2D, hypertension, liver failure, 
rheumatoid arthritis), had similar profile allocations, with the excep­
tion of lower DHG profile probabilities (Fig. 4b). We also assessed 
enrichment of the metabolic syndrome across profiles, using the World 
Health Organization criteria15 (Supplementary Fig. 21 and Supplemen­
tary Table 13). While most individuals with the metabolic syndrome 
had a concordant profile (>60%), we found statistically significant 
enrichment for individuals with the metabolic syndrome in discordant 
compared to the concordant profiles, particularly in DHG (more than 
30-fold increase). Two exceptions were the DHT profile in women and 
the DAL profile in men, which were associated with lower prevalence of 
metabolic syndrome compared with the concordant profile.

We investigated medication use within each profile (Fig. 4c  
and Supplementary Table 14) and showed enrichment for insulin, 
antihypertensive and lipid-lowering therapy use in the DHG profile. 
For example, insulin therapy was >30 times more frequent in the dis­
cordant compared with the concordant profile. Fewer men with a DAL 
profile were medicated with lipid-lowering medication compared with 
the concordant profile (OR 0.64, 95% CI 0.59, 0.68). The observed dis­
ease associations were largely unmodified after adjustment for these 
medications, except for the OR estimates for the DHG profile, which 
were significantly attenuated (Fig. 4a).

Discordant profiles and cardiometabolic disease incidence
To evaluate the effect of discordant profiles on future risk of disease, 
we used longitudinal data derived from the clinical records of up to 
155,000 individuals from UKB, RS and GHS, who were free from the 
index disease at baseline (Supplementary Table 15). We first derived 
crude incidence estimates of MACE and T2D at 5–10 years of follow-up 
for each profile applying the same weighted approach as previously 
described (Supplementary Table 16). After multiple test correction, 
the DHG and DIS profiles were associated with higher risk of MACE 
compared with BC across sexes (10-year DHG relative risk (RR) 1.96, 
95% CI 1.66, 2.31; 10-year DIS RR 1.46, 95% CI 1.25, 1.72). The female, but 
not the male, DAL profile was associated with higher MACE relative to 
BC (10-year female RR 1.40, 95% CI 1.21, 1.61; 10-year male RR 0.96, 95% 
CI 0.87, 1.07). In general, all discordant profiles were associated with  
higher risk of incident T2D compared with BC, particularly the  
DHG profile, which displayed a 6–13-fold increase in T2D risk. The only 
exception was the female DHT profile, which was associated with lower 
risk of T2D compared with BC (10-year RR 0.46, 95% CI 0.35, 0.60).

To assess the added clinical value of these profiles for MACE  
prediction, we added profile allocation probabilities to sex-specific 
survival models. The predictor variables in these models consisted 
of all the biomarkers used to produce the initial clustering partition, 
as well as all variables and interactions used in the current CVD risk 
stratification tool endorsed by the European Society of Cardiology 
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Fig. 2 | Characteristics of concordant and discordant profiles. Discordant 
profiles discovered in the UKB and robustly replicated across three independent 
cohorts. a, UMAP 2D projection. Colors denote profile allocations. b, Cluster 
weights. c, Forest plot of average biomarker residuals characterizing each 
profile. Points and error bars represent estimates and 95% confidence intervals of 

average residual values of each biomarker. The dashed line represents a residual 
of 0. Female sample sizes: UKB = 77,207; TMS = 1,542; RS = 5,704; GHS = 7,301. 
Male sample sizes: UKB = 67,904; TMS = 1,633; RS = 4,289; GHS = 7,353. DBP, 
diastolic blood pressure; SBP, systolic blood pressure; SCR, serum creatinine; 
WHR, waist-to-hip ratio.
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(SCORE2)16,17. We also included in these models the baseline comor­
bidities we evaluated in Fig. 3a (see Supplementary Table 17 for vari­
able list). Through the comparison of nested models, we showed that 
adding profile information improved the predictive ability of these 
prediction models in UKB, especially in men, as shown by significant 
likelihood ratio tests and difference in C-statistics (Table 1). The addi­
tional explained variation in MACE attributed to the profiles in UKB 
ranged from 1.4% to 5.4%. Although profile information explained 
additional variance in RS and GHS, the likelihood ratio tests were not 
statistically significant.

Because an individual’s allocation probability for any given  
profile is determined by the biomarkers and BMI, discordant profile 
estimates from these survival models reflect complex interactions 
between profiles, biomarkers and BMI. These interactions modify 
the associations between biomarkers and risk, conditional on their 
specific profile of discordance with BMI (Supplementary Fig. 22 and 
Supplementary Table 18). These interaction estimates were also robust 
to regularization using the Lasso penalty (Supplementary Fig. 23). To 
better understand these profile estimates, we derived the expected 
change in risk of MACE in a disease-free, 55-year-old individual, with 
a BMI of 30 kg/m−2, when their profile allocation probability is raised 
by 10% for any given profile, with a corresponding decrease in the 
probability of having a concordant profile (Fig. 5, Supplementary 
Fig. 24 and Supplementary Table 19). After multiple test correction, 
an increased probability for the DAL profile was associated with higher 
risk of MACE compared with BC across sexes (10-year hazard ratio 
(HR) in women 1.04, 95% CI 1.03, 1.06; 10-year HR in men 1.05, 95% CI 
1.04, 1.06). By contrast, increased probability for the DHG profile was 
associated with lower risk of MACE compared with BC (10-year HR in 
both sexes 0.95, 95% CI 0.93, 0.98).

Using the same approach, we determined the clinical value of the 
discordant profiles by estimating the 5- and 10-year risk of incident 
diabetes in individuals without diabetes. We found that adding profile 
information only marginally increased the variance explained in dia­
betes progression in UKB. However, in RS, where the median glucose 
values were higher, the fraction increased to 8–12% (likelihood ratio 
P < 0.001). After multiple test correction, only the female DHG profile 
remained associated with diabetes progression. A 10% increase in 
the probability of having a DHG profile at the expense of lowering 
the probability of having a concordant profile was associated with 
a 20–60% increase in risk of progressing to diabetes compared with 
individuals in BC.

We then evaluated the added net benefit of discordant profiles 
using decision curves to determine whether conducting interventions 
to prevent MACE is likely to be worthwhile (Fig. 6a and Supplementary 
Table 20)18–20. For this, we compared the prediction models created 
using only baseline data (including baseline biomarker values and other 
relevant clinical characteristics) with models that additionally incor­
porated profile estimations. Both models with and without discordant 
profile information generally outperformed default strategies of no 
intervention or universal intervention at various thresholds of disease 
probability up to 15%. At a threshold of a 10% 10-year MACE risk (tradi­
tionally used to determine statin initiation, and equivalent to accept 
intervening nine individuals without the disease (false positives) to 
prevent one event (true positive)), adding profile information yielded 
an average net benefit of 4 additional true positives and 37 additional 
true negatives per 10,000 men compared with the baseline model. To 
benchmark these values against a contemporary standard, we com­
puted the additional net benefit of LDL, an established intervention 
target for MACE, over and above the predictive value of chronological 
age; the inclusion of LDL resulted in 5 additional true positives and 42 
additional true negatives per 10,000 male individuals tested. Thus, 
discordancy and LDL can be considered of comparable value for the 
prediction of MACE. In women, adding discordant profile information 
did not yield any material net benefit.

Discordant profile information had the highest utility in deter­
mining women at risk of diabetes progression. Using a 10-year risk 
threshold of 10%, we found that discordant profile information led 
to a net benefit of 15 additional true positives and 135 additional true 
negatives per 10,000 women compared with the baseline model.  
In men, the additional net benefit was 4 additional true positives and 
33 additional true negatives per 10,000 men.

We next examined how the benefits of adding discordant profile 
information were distributed across profiles (Fig. 6b). Net benefits  
in MACE were concentrated in the BC and DAL profiles in both men  
and women. Notably, we observed improvements in net benefit in the 
DIS profile for men, but in women net benefit declined. For diabetes  
progression, we observed improvements in net benefit across all  
profiles in women. Conversely, among men, we observed improve­
ments only in the BC and DIS profiles.

Discordance by ethnicity
We evaluated how the discordant profiles identified in European popu­
lations were distributed in British African and South Asian populations  
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in UKB (NAfrican = 4,019, NSouthAsians = 3,388; Supplementary Figs. 25  
and 26 and Supplementary Table 21). South Asian individuals had 
around four times higher odds of having a DHG profile compared with 
people of European ancestry (female OR 3.87, 95% CI 3.13, 4.72; male 
OR 4.61, 95% CI 3.90, 5.41). We observed a similar enrichment of DHG in 
the African population, albeit of lesser magnitude (female OR 2.08, 95% 
CI 1.65, 2.59; male OR 2.54, 95% CI 2.05, 3.11). South Asian people were 
also more likely to have a DAL profile than people of European ancestry  
(female OR 1.79, 95% CI 1.49, 2.13, male OR 1.38, 95% CI 1.18, 1.60). 
Women of African and South Asian ancestry had higher probabilities 
than women of European ancestry of having a DIS profile (OR African 
1.39, 95% CI 1.13, 1.68; OR South Asian 1.80, 95% CI 1.45, 2.20). Women 
of African ancestry also had higher DHT probabilities than European 
women (OR 1.25, 95% CI 1.09, 1.42).

We observed enrichment of diseases and medication use at  
baseline predominantly in the DHG profile compared with the BC 
profile, as seen in the European population (Supplementary Tables 22 
and 23). In adjusted survival analyses including discordant profile  
information (Supplementary Table 24), we found that in South Asian  
men, a 10% higher probability of having a DAL profile was associated  
with higher 10-year MACE risk compared with a BC profile (HR 1.10,  

95% CI 1.05, 1.15), whereas a 10% higher DHG probability was associ­
ated with lower risk (HR 0.84, 95% CI 0.74, 0.95), comparable with the 
findings in European men.

By contrast to European women, South Asian women with a 10% 
higher DHT probability had a higher 10-year MACE risk compared with 
the BC profile (HR 1.09, 95% CI 1.03, 1.16). A 10% higher DHG probability 
conveyed an especially high risk of diabetes progression at 10 years 
in African men (HR 1.68, 95% CI 1.21, 2.34), consistent with estimates 
in European men. By contrast, the risk of diabetes progression was  
not increased in women of African ancestry or in men or women of 
South Asian ancestry at a 10% DHG probability. The likelihood ratio 
tests comparing models with and without discordant profile infor­
mation were not statistically significant after multiple test correction 
in any of these ethnic groups. Discordance independently enhanced 
MACE and T2D prediction in men of South Asian and African ancestry, 
respectively, at a nominal level of statistical significance (likelihood 
ratio test P < 0.05) (Supplementary Table 25).

Discussion
The relationship between elevated BMI and other morbidities is highly 
heterogeneous, underscoring the inability of this simple measure 
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to adequately characterize the pathophysiological complexities of  
obesity. Here, we deconvoluted this heterogeneity using unsuper­
vised clustering to identify five phenotypic profiles that are defined  
by atypical relationships between BMI and risk biomarkers. In turn,  
these clusters convey risk profiles for CVD and diabetes that differ 

markedly from those seen in the more common concordant profile. These 
results robustly replicated across four independent population-based 
cohorts. Collectively, these discordant clusters characterize ~20% of 
the general population and improve the precision and accuracy of 
CVD and T2D risk prediction to a similar degree as contemporary  
clinical risk markers such as LDL. Using this discordancy approach 
would lead to a net benefit of 37–135 unnecessary interventions 
avoided, and appropriate interventions initiated in an additional  
4–15 patients for every 10,000 individuals tested.

We show, for instance, that MACE prediction improves when  
discordance between lipid fractions and BMI (that is, DAL) is incor­
porated into standard prediction models. DAL resembles the pheno­
typic characteristics of familial combined hyperlipidemia, where a 
dearth of adipose tissue drives cardiogenic dyslipidemia21–23. Diagnosis  
of familial combined hyperlipidemia is challenging because of its 
heterogeneous presentation, often requiring extensive testing of  
the proband and their family members23. We found that individuals 
with a DAL profile had a lower prevalence of MACE at baseline and  
were less often prescribed medication, indicating that determining  
DAL in these individuals might aid early risk stratification and preven­
tion. Importantly, the DAL profile describes a subgroup of relatively 
lean people at elevated cardiovascular risk.

Two discordant profiles (DHG, DLT) predisposed lower MACE 
incidence, despite being characterized by elevated biomarkers that 
are typically considered cardiogenic. The DHG profile more frequently 
included people with multimorbidity, including a higher prevalence 
and incidence of diabetes. In models adjusted for these comorbidities, 
individuals with the DHG profile who were disease-free at baseline were 
less likely to develop MACE than their counterparts with concordant 
profiles. This may be because glycemia and LDL concentrations are 

Table 1 | Model comparison without and with profile allocation probabilities

Outcome Follow-up 
time 
(years)

Sex Cohort LRT P value 5% FDR Added 
variance 
explained (%)

C-statistic 
baseline 
model

C-statistic 
baseline +  
profiles

C-statistic 
difference

Difference  
P value

5% FDR

MACE 5 Female UKB 3.63 × 10−4 True 2.31 0.733 0.735 0.002 0.075 False

MACE 5 Female RS 0.997 False 0.16 0.768 0.769 0.001 0.399 False

MACE 5 Female GHS 0.133 False 5.00 0.816 0.820 0.004 0.376 False

MACE 5 Male UKB 2.70 × 10−16 True 5.44 0.704 0.709 0.005 3.33 × 10−5 True

MACE 5 Male RS 0.530 False 1.78 0.721 0.721 0.000 0.953 False

MACE 5 Male GHS 0.998 False 0.06 0.771 0.771 0.000 0.581 False

MACE 10 Female UKB 5.23 × 10−5 True 1.36 0.726 0.728 0.002 0.035 True

MACE 10 Female RS 0.886 False 0.43 0.763 0.763 0.000 9.62 × 10−1 False

MACE 10 Male UKB 4.22 × 10−20 True 4.23 0.685 0.690 0.005 1.19 × 10−6 True

MACE 10 Male RS 0.271 False 1.88 0.711 0.712 0.001 0.840 False

DM 5 Female UKB 0.893 False 0.11 0.872 0.872 0.000 0.558 False

DM 5 Female RS 3.80 × 10−6 True 10.79 0.811 0.822 0.011 0.043 False

DM 5 Female GHS 1.41 × 10−3 True 8.97 0.806 0.814 0.008 0.126 False

DM 5 Male UKB 0.872 False 0.07 0.841 0.841 0.000 0.439 False

DM 5 Male RS 4.03 × 10−4 True 8.38 0.816 0.821 0.005 0.318 False

DM 5 Male GHS 0.606 False 1.24 0.802 0.804 0.002 0.388 False

DM 10 Female UKB 0.046 False 0.49 0.854 0.855 0.001 0.162 False

DM 10 Female RS 3.92 × 10−11 True 12.83 0.796 0.808 0.012 0.005 True

DM 10 Male UKB 0.048 False 0.38 0.821 0.822 0.001 0.001 True

DM 10 Male RS 3.47 × 10−8 True 11.05 0.804 0.808 0.004 0.244 False

LRTs, fraction of additional variance explained and C-statistics comparing nested models with versus without discordant profile allocation probabilities. LRT P values are derived from the 
chi-square distribution with degrees of freedom equal to the number of additional parameters in the full compared with the reduced model. The variance of the difference in C-statistic 
considers the covariance of the C-statistics from the two models. The resulting P value is derived from a two-sided normal test. DM, diabetes mellitus; LRT, likelihood ratio test.
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inversely related in this profile. This inverse relationship, in which T2D 
risk is elevated, is also observed in people with a genetic predisposition 
to low LDL concentrations24.

Similarly, the DLT profile, characterized by higher discordant 
ALT, had no association with diabetes progression and conveyed lower 
MACE risk compared with the concordant profile. Higher blood concen­
trations of ALT and other markers of liver dysfunction have been linked 
to elevated CVD risk, although this risk profile is usually concomitant 
with obesity25,26, as is the case with the concordant profile. However, 
the relationship between ALT and CVD risk is nonlinear, with inverse 
associations between ALT and CVD risk observed when ALT levels are 
within the normal range27,28, as well as in alcoholic and nonalcoholic liver 
disease29. The relationship between ALT concentrations and CVD risk 
also appears to be modified by diabetes, with ALT positively associated 
with CVD mortality in the presence of diabetes and inversely associated 
with CVD mortality when diabetes is absent30, consistent with the DLT 
risk profile described here.

No DHT profile was observed in males. Although hypertension 
and obesity are more prevalent in males than in females, BMI is report­
edly a stronger risk factor for hypertension in females than in males31. 
This may be in part attributable to the effects of menopause and 
hormone-replacement therapy32.

Our analyses show that accuracy can be improved when discor­
dancy variables are included in prediction models. Nevertheless, 
although the discordant profiles conveyed similar estimates of MACE 
and diabetes risk in men and women, predictive accuracy sometimes 
varies by sex. For example, in discordant women, adding the DIS profile 
to MACE prediction models diminished accuracy, whereas in discord­
ant men, accuracy improved. This may reflect sex-specific differences 
in cardiometabolic risk profiles; in women, for example, CRP concen­
trations are generally higher and the relationships of CRP with adipose 
mass and adipose distribution are typically stronger than in men33. 
Conversely, including the discordant profiles in models predicting dia­
betes progression improved predictive accuracy in women more than 
in men. These differences are consistent with published analyses, in 
which diabetes prediction accuracy is generally higher in women than 
in men, especially when models include anthropometric variables34. 
It is important to acknowledge that we did not formally test whether 

the profile effects differed by sex, for example by combining data for 
both sexes and testing for sex by profile interactions. This is because 
profiles were estimated separately for each sex. Consequently, the 
scale of discordance is different by sex.

Our approach to defining discordant subgroups applies nonlinear 
clustering techniques to large datasets, describing the distribution 
of multivariate data without the constraints of linear assumptions. 
Similar techniques have been used elsewhere to help resolve clinical  
heterogeneity in new-onset T2D35. Although classification meth­
ods have often been used to resolve disease heterogeneity, doing so  
frequently disregards intraprofile heterogeneity, interprofile over­
lapping and misclassification36. The partitioning algorithm used here 
addresses these limitations by allocating profile probabilities based 
on the specific phenotypic combinations. This approach enables the 
effects of discordances to be more precisely estimated, even within 
the concordant profile. This allows for the continuous nature of risk 
to be captured, incorporating both the BMI-independent effects of 
biomarkers and the effects of BMI-discordance37.

Several limitations should be acknowledged. First, our findings 
are based on a limited set of biomarkers and the cohorts are homo­
geneous (35–75-year-old adults of European ancestry), also it is not 
known whether these findings will transfer adequately to other popu­
lations. Second, although our study included four large independent 
cohorts and the profiles identified were successfully replicated across 
all cohorts, the proportion of participants with the discordant profiles 
was small, which likely limited statistical power for the discovery and 
replication analyses performed here. Better separation between sub­
groups might be possible if a more comprehensive biomarker set was 
to be included in the clustering analysis. Third, the data used to derive 
the clusters were cross-sectional. Thus, some biomarker levels will 
have been imprecisely estimated owing to regression to the mean. This 
may have further impeded cluster discovery and replication38. Fourth, 
our study relied on clinical records to ascertain MACE and diabetes 
incidence, which may lead to an underestimation or overestimation 
of risk. Fifth, although we included in our analysis conditions that are 
commonly associated with altered levels of the biomarkers selected, 
many other conditions and medications (for example, mental health 
conditions, thyroid conditions, steroids) can alter BMI–biomarker 
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associations. Achieving full adjustment for all these variables is there­
fore challenging. However, because initial assessments typically rely 
on the selected biomarkers, examining their discordance with BMI can 
serve as a valuable initial approach for risk stratification.

In conclusion, we identified five distinct phenotypic profiles exhib­
iting diverse relationships between BMI and cardiometabolic bio­
markers and varying degrees of CVD and diabetes risk. These analyses 
help resolve some of the substantial heterogeneity in the relationship 
between BMI and disease risk. Incorporating phenotypic discordance 
into contemporary risk scores enhances the prediction of MACE and 
diabetes progression in the general population.
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Methods
Study cohorts
The UK Biobank. The UKB is a large prospective cohort that recruited  
more than 500,000 adults (aged 37–73 years) during 2006–2010  
(ref. 39). Participants provided comprehensive demographic, health, 
biological, cognitive, social, lifestyle, mental and well-being data. 
This specific analysis was approved by the UKB research committee 
(approval ID: 57232). Longitudinal outcome data for up to 10 years 
follow-up were extracted from clinical and mortality records.

The Maastricht Study. The MS is an observational prospective 
population-based cohort study. The rationale and methodology have 
been described previously40. In brief, the study focuses on the etiology, 
pathophysiology, complications and comorbidities of type 2 diabetes 
mellitus (T2DM) and deployed an extensive phenotyping protocol. 
Eligible for participation were all individuals aged between 40 and 
75 years living in the southern part of the Netherlands. Participants 
were recruited through mass media campaigns and from municipal 
registries and the regional Diabetes Patient Registry via mailings. 
Recruitment was stratified according to known T2DM status, with an 
oversampling of individuals with T2DM, for reasons of efficiency. The 
current report includes cross-sectional data from the first 7,689 partici­
pants, who completed the baseline survey between November 2010 and 
December 2017. The examinations of each participant were performed 
within a time window of three months. The study has been approved 
by the institutional medical ethical committee (NL31329.068.10) and 
the Minister of Health, Welfare and Sports of The Netherlands (Permit 
131088-105234-PG). All participants gave written informed consent.

The Rotterdam Study. The RS is a population-based cohort study con­
ducted in the Ommoord district of Rotterdam, The Netherlands, with 
the primary objective of assessing common diseases among the elderly 
population. The study, which has been extensively documented,41 
recruited 7,983 individuals aged 55 years or older for the initial RS-I 
cohort in 1990. Subsequently, in 2000, the RS-II cohort was expanded 
by 3,011 participants who either relocated to the study area or reached 
the age of 55. The cohort was further extended with 3,932 participants 
aged 45 years or older (RS-III). Baseline evaluations were conducted 
through home interviews and comprehensive physical examinations at 
the time of recruitment, followed by subsequent visits every 3–4 years 
for follow-up assessments. We included longitudinal outcome data up 
to 10 years after recruitment.

The Gutenberg Health Study. The GHS is a prospective and obser­
vational adult population-based cohort study in the Mainz–Bingen 
region of Rhine–Palatine in Germany. The study sample consisted 
of 15,010 participants aged 35–74 years who were enrolled at their 
baseline examination between 2007 and 2012. Each study participant 
underwent a comprehensive standardized clinical and laboratory 
examination at enrollment. We included follow-up outcome data up 
to 5 years after recruitment. More detailed information on the study 
design has been published before42.

Statistical analysis
Data preparation. We included 13 biomarkers: FG concentrations 
in mmol l−1; lipid fraction (HDL, LDL, TG) concentrations in mmol l−1; 
systolic and diastolic blood pressures in mmHg; serum creatinine con­
centrations in μmol l−1; ALT concentrations in U l−1, CRP concentrations 
in mg l−1; waist-to-hip ratio in cm cm−1; age in years; current smoking 
status (1 for yes, 0 for no); and sex (male, female) from all cohorts. 
Variable units were converted to a common value where necessary. No 
BMI threshold was applied. From the UKB, TMS and GHS, we included 
only complete sets of all the biomarkers considered in the clustering 
analyses. RS included individuals for whom some biomarker values 
were missing (<10% missing), which were imputed using the Multiple 

Random Forest Regression Imputation method from the R package 
mice (v.3.16.0)43. Values >5 s.d. units from the mean were deemed 
to be erroneous and were consequently removed before the main 
analysis44. Owing to the established gender differences between BMI, 
some biomarkers and diabetes/CVD risk, all downstream analyses 
were stratified by sex.

Phenotypic discordance with BMI. We estimated the age and cur­
rent smoking-adjusted associations in all selected biomarkers per 
unit increase in BMI by taking the residuals of a linear model with the 
respective biomarker as outcome and age and smoking status as the 
sole covariates. We then calculated the difference between expected 
and observed values, which were centered and scaled to have a mean 
of zero and unit standard deviation. To evaluate the proportion of 
individuals whose biomarker values deviate substantially from the 
expected given their BMI, we measured the squared Mahalanobis dis­
tance of every individual to a multivariate normal distribution around 
the expected values45. Because the squared Mahalanobis distance 
follows a chi-square distribution, we converted these distances to P 
values and assessed the proportion of individuals with P values above 
the critical threshold of 0.05 (expected proportion 5%). We compared 
the observed proportion with those expected using a binomial test 
(P < 0.05 was considered statistically significant).

UMAP projection and profile identification. We projected individual 
deviations in two dimensions using the umap function implemented 
in the R package uwot v.0.1.16 (ref. 14). We configured the number of 
nearest neighbors (nn) in each cohort as a function of sample size 
through the equation:

nn = max(10, 10 + 15×(log10 (Ntotal) − 4))

in which Ntotal represents the total number of participants in each 
cohort. In addition, we set the ‘binary_edge_weights’ parameter of this 
function as true, ensuring that all nonzero edge weights in the graph 
are set to 1. Both configurations ultimately implement PacMAP, a modi­
fication of UMAP that better preserves the global and local structure 
from the high-dimensional space in the projection46. We also set the 
‘dens_scale’ parameter to 1, which additionally implements densMAP, 
another modification of UMAP that improves preservation of the den­
sity (closely connected individuals will appear closer in denser areas in 
the projection)47. To find subgroups, we used the proximity network on 
which this projection is based. We first used the leading eigen vector 
algorithm48 to find stable initial seeds to subsequently run the Leiden 
algorithm, using the implementations available in the R package igraph 
v.2.0.2. The Leiden algorithm is designed to enhance community detec­
tion in large networks, by ensuring that identified communities are well 
connected. Through three phases, local moving of nodes, refinement of 
the partition and aggregation of the network, the algorithm guarantees 
connectivity, convergence to locally optimal assignments49, which 
we iterated more than 500 times to identify strongly interconnected 
regions while optimizing the modularity criterion. This resulted in hard 
partitions, where individuals are assigned to a single cluster. We then 
calculated for every individual the normalized eigen centrality scores 
for their respective clusters, which measures its importance within 
the cluster. We used these scores as weights to calculate the center 
and covariance matrix of each cluster, which were part of the Gaussian 
mixture distribution. Clusters in the center of the projection (where 
residual values are closer to 0) were less stable between iterations  
than those at the boundaries. To address this issue, we introduced a 
‘concordant’ distribution of residuals in the Gaussian mixture calcula­
tion, represented by a zero mean and identity covariance matrix. As a 
result, individuals with a discordant profile that is insufficiently sepa­
rated from the concordant profile would have similar probabilities for 
both profiles, and their allocation would therefore not be replicated 
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(see ‘Profile replication’ section below). These individuals would 
instead be included in the concordant profile, enhancing the quality of 
the final partition50. We kept centers and covariance matrices fixed, and 
estimated the weights of each cluster, which represent their respective 
population proportions. The resulting partition included concordant 
and discordant profiles and every individual had a probability score for 
each profile, with the total probability scores equaling 1.

Profile replication. To assess the validity of the partitions identified 
in UKB, we ran the same pipeline of network construction, 2D visu­
alization and clustering in TMS, RS and GHS, with the parameters as 
described above, and compared their results with UKB. We assessed 
whether individuals allocated to a profile in the original model from the 
UKB with high certainty (that is, a probability >80%) also had a similar 
median probability of being allocated to a profile found in any of the 
other three ‘validation’ cohorts (again, with a probability >80%). We 
considered a profile as having been replicated if this condition was met 
in all three validation cohorts, which ensured that only clusters repre­
sented in all three cohorts were included in the final model. We then 
readjusted the weights for each profile and focused all downstream 
analyses on these latter replicated clusters. The clusters were named 
according to the average residuals of all biomarkers.

Connectivity within profiles and quality of partitions. We assessed 
the connectivity of individuals within each profile by first labeling 
individuals according to the highest probability of allocation to any 
of the profiles. We then extracted the corresponding subgraphs for 
each profile from the UMAP graph and calculated the global transiti­
vity index for each profile. This index measures the probability of two 
individuals who are connected to a common third individual also being 
directly connected to each other (a measure of how frequently ‘the 
friend of my friend is my friend’).

To assess cluster separation quality, we used UKB data to calculate 
the relative entropy of the final partition, also known as the Kullback–
Leibler divergence, a measure derived from information theory51. This 
measure takes values from 0 to 1, indicating either identical probability 
distributions of all profiles (that is, equal probabilities to all profiles for 
every participant) or complete cluster separation (no overlap between 
clusters).

Comparison to other clustering algorithms. To compare the quality  
of the partition produced by our pipeline, we compared the final 
partition with the best results obtained by applying three clustering 
algorithms on the deviations from BMI-expectations in UKB, each 
with distinct underlying assumptions. We fitted a Gaussian mixture 
model directly to the deviation data (centroid-based), which looks 
for a mixture of multivariate distributions (each with its own center, 
covariance matrix and weight) that best describes the data52. We also 
fitted an archetypal model (boundary-based), which looks for the best 
combination of extreme points that enclose and summarize the data53. 
Both algorithms optimize the variance explained and are penalized 
by the number of clusters. In addition, we fitted an HDBSCAN model 
(density-based), which finds a set of stable dense ‘regions’ within the 
data, without constraining cluster shape, each with a minimum cluster 
size or density, which is controlled by the ‘minPts’ argument54. We fit­
ted multiple models of the three algorithms by varying the number of 
clusters (Gaussian mixture and archetypal models, from 1 to 20) and 
minPts (various values from 5 to 1,000), and then selected the best 
solution based on the elbow method. We then assessed the relative 
entropy of the best solutions and compared these values to those 
obtained from our final partition.

Profile-specific estimates. We derived BMI–biomarker associations  
for each profile using linear regression where each individual was 
weighted by the respective profile probabilities. We calculated 

weighted means, standard deviations, medians and interquartile 
ranges for all biomarkers within each profile. Similarly, to derive 
profile-specific prevalences, we multiplied each case by the respective 
profile probability, and then divided by the sum of the probabilities for 
that profile. For incidence, the denominator was the sum of the product 
between the follow-up times and the profile probability for each indi­
vidual. We calculated incidences of MACE and diabetes progression at 5 
and 10 years after recruitment (definitions in Supplementary Table 26 
and description of follow-up data provided in Supplementary Table 15). 
Using these prevalence and incidence estimates, we calculated ORs and 
RRs comparing each discordant profile to the concordant using bino­
mial and Poisson regressions. We compute study-specific estimates 
as well as overall estimates using fixed and random effects models55. 
We reported the random effects models, as we found these were more 
conservative than the former.

Added value of profiles in prediction. To assess the added value of 
discordant profile information in prediction, we compare the perfor­
mance of nested models with and without incorporating information 
of discordant profiles.

Profile allocation probability transformation. The use of profile allo­
cation probabilities as predictors in regression renders models uni­
dentifiable because of the sum-to-1 constraint. To address this issue, 
we applied the log-contrast framework, frequently used in composi­
tional data analysis37. Under this framework, sum-to-1 predictors are 
incorporated in a regression model by constraining the sum of the 
corresponding effect estimates to be zero. We applied this by selecting 
the concordant profile as the reference profile and for all individuals 
we divided their discordant allocation probabilities by the concord­
ant probability. The logarithm of these quotients can then be used as 
predictors, satisfying the aforementioned constraints.

Nested Cox regressions. The risk associated with profile allocations was 
evaluated by using nested Cox proportional hazard models for MACE 
and T2D. For each outcome, there were two nested models: a basic 
model that includes a variety of risk factors, and an alternative model 
that includes all the risk factors from the base model and additionally 
incorporates discordant profile allocation probabilities in the form 
of log ratios. The estimation of outcome incidence was conducted by 
considering two follow-up periods: 10 years and 5 years.

For MACE, all models encompassed predictors featured in 
SCORE2, a cardiovascular risk stratification score endorsed by the 
European Society of Cardiology16. We utilized a version of SCORE2 
validated in diabetic populations17. We added biomarkers that were not 
considered in SCORE2 but were part of our clustering analysis, as well 
as conditions and medications that are commonly associated with the 
biomarkers selected. The full list of covariates in these models is shown 
in Supplementary Table 17. The MACE prediction models excluded all 
participants with prevalent CHD, peripheral arterial disease and stroke.

The nested Cox models for predicting the incidence of T2D 
included all the variables that we used in our clustering analysis. 
Because these models included FG, the model with discordant pro­
files captures the added value of discordance beyond the current level 
of glycemia. The full list of covariates in these models is also shown in 
Supplementary Table 17. To fit these models, we excluded participants 
with pre-existing T2D or T1D, as well as those who were on insulin and/
or antidiabetes medications.

Regularized Cox regression. To help ensure that low event rates and 
high dimensionality are not skewing our key findings, we refitted the 
models in UKB using the Lasso penalty, which shrinks uninformative 
estimates towards zero. The optimal penalty value was selected based 
on the lowest deviance using 10-fold cross-validation, performed with 
the glmnet package in R56.
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Comparison of nested Cox regressions. To compare the nested models 
within each cohort, we used likelihood ratio tests57 and difference 
in C-statistics58. We quantified the fraction of additional variance 
explained by discordant profiles as a percentage of the total vari­
ance explained using the model likelihoods, a method that is not 
affected by arbitrary threshold selections57,59. However, given that 
thresholds are needed to decide when to intervene in clinical prac­
tice, we investigated the utility of adding discordance information 
to traditional risk factors using decision curve analyses18. Model 
performance was evaluated at various disease probability thresholds 
for intervention, which represent the weight given to identifying a 
true positive in terms of false positives, as well as to identifying a 
true negative in terms of false negatives. Net benefit (in terms of true 
positives) and net interventions avoided (in terms of true negatives) 
provided by the models were calculated within each study based on 
these weights, and then averaged across studies19. Profile-specific 
decision curves were also derived by recomputing each calculation 
using each profile’s weights.

Risk estimates for discordant profiles. As with any regression, the effect 
estimate of each profile in the models represents the change in the 
outcome expected from increasing the log ratio of one discordant 
profile unit while keeping the other log ratios (and other covariates) 
constant. Because of the sum-to-1 constraint, this is equivalent to 
increasing the probability of a discordant profile by a certain factor 
(because we are using the natural logarithm, the factor is the square 
root of e) while decreasing all other profiles by the same factor, which 
effectively keeps the other log ratios constant. However, a change 
in the probability of a certain discordant profile inevitably carries 
changes not only in the other profile probabilities, but also in the bio­
markers, and vice versa. In this context, discordant log ratios represent 
interaction terms that modify the relationship between biomarkers 
and disease events, conditional on their pattern of discordance with 
BMI. Hence, to correctly estimate the effect of a shift in the probabil­
ity distribution from the concordant to a specific discordant profile, 
while keeping the other discordant profiles fixed at their population 
value, we included all the changes, both in biomarker and discordant 
log-ratio terms, that would correspond to this shift. Study-specific 
estimates were computed and then pooled using fixed and random 
effects meta-analyses60.

Discordance by ethnicity. We calculated profile probabilities in  
African (N = 4,019) and South Asian (N = 3,388) individuals ascertained 
at first assessment in UKB, and then compared the probabilities for 
each profile with those obtained in the European subset using binomial 
regression. We used the same approaches outlined above to calculate 
enrichment of diseases and medications, and risk of MACE and diabetes 
progression within each profile.

Inclusion and ethics
All collaborators of this study who have fulfilled the criteria for author­
ship required by Nature Portfolio journals have been included as 
authors, as their participation was essential for the design and imple­
mentation of the study. Roles and responsibilities were agreed among 
collaborators ahead of the research. This work includes findings 
that are locally relevant, which have been determined in collabora­
tion with local partners. This research was not severely restricted 
or prohibited in the setting of the researchers, and does not result 
in stigmatization, incrimination, discrimination or personal risk to 
participants. Local and regional research relevant to our study was 
considered in citations.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
UKB data are available through a procedure described at http://www.
ukbiobank.ac.uk/using-the-resource/, where timeframe informa­
tion can also be found. Restrictions apply to the availability of TMS 
data, which were used under license for the current study. Data are, 
however, available from the authors upon reasonable request and 
with permission of TMS management team. Timelines and conditions 
can be found at https://www.demaastrichtstudie.nl/research/data- 
guidelines. Access to RS can be requested through the management 
team (secretariat.epi@erasmusmc.nl), which has a protocol for 
approving data requests. Because of restrictions based on privacy 
regulations and informed consent of the participants, data cannot 
be made freely available in a public repository. More information can 
be found at https://www.erasmusmc.nl/en/research/core-facilities/
ergo-the-rotterdam-study. Data from GHS are not publicly available 
because this is not covered by the informed consent of participants. 
However, access to the data in the local database is possible upon rea­
sonable request according to the ethics vote. Interested scientists can 
make their requests to the Gutenberg Health Study Steering Committee  
(e-mail: ed.zniam-shg@ofni). More information can be found at  
http://www.gutenberghealthstudy.org/.

Code availability
All analyses were performed in programming language R v.4.2 (https://
www.r-project.org/). The scripts used can be found at https://github.
com/danielcoral/SOPHIA_Cross_Sectional.
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Extended Data Fig. 1 | Distribution of BMI and biomarkers per cohort.  
a. Boxplots showing the distribution of continuous variables across cohorts. 
In each boxplot, the centre represents the median, the bounds of the box 
represent the interquartile range, and the whiskers represent the 2.5 and 97.5 
percentiles. b. Proportion of current smokers in each cohort. Female sample 

sizes: UKB = 77,207; TMS = 1,542; RS = 5,704; GHS = 7,301. Male sample sizes: 
UKB = 67,904; TMS = 1,633; RS = 4,289; GHS = 7,353. WHR: waist-to-hip ratio. 
SBP: systolic blood pressure. DBP: diastolic blood pressure. ALT: alanine 
transaminase. SCR: serum creatinine. CRP: C-reactive protein. HDL: high-density 
lipoprotein. TG: triglycerides. LDL: low-density lipoprotein. FG: fasting glucose.
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Extended Data Fig. 2 | UMAP projections of BMI-biomarker discordance across cohorts. Two-dimension projections derived from the UMAP algorithm.  
GHS: Gutenberg Health Study, TMS: Maastricht Study, RS: Rotterdam Study, UKB: UK Biobank.
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Extended Data Fig. 3 | Discordant profile centres across cohorts. These 
centres were obtained by running the clustering approach on the 4 cohorts 
separately. Points represent average residual values within each profile, and the 
lines depict the distance from the null residual value. WHR: waist-to-hip ratio. 

TG: triglycerides. SCR: serum creatinine. SBP: systolic blood pressure. LDL: 
low-density lipoprotein. HDL: high-density lipoprotein. FG: fasting glucose. DBP: 
diastolic blood pressure. CRP: C-reactive protein. ALT: alanine transaminase.
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Extended Data Fig. 4 | Validation of discordant profiles identified in UK 
Biobank. Nodes are clusters found by running our clustering algorithm in each 
cohort separately. The numbering is the same as in Extended Data Figure 3. Edges 
are drawn between a cluster from the UKB model and a cluster from another 
cohort if the subset of individuals with high probability to be allocated to the UKB 

cluster (>80%) have also a high median probability (>80%) to be allocated to the 
cluster from the other cohort. Only UKB clusters with edges to 3 clusters from 
each of the other cohort were considered replicated. GHS: Gutenberg Health 
Study, TMS: Maastricht Study, RS: Rotterdam Study, UKB: UK Biobank.
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